Panda Selection#
Explanation of Each Code Block#
df['column_name']
:Retrieves a single column as a Series.
Example: Access the
Name
column.
df[['col1', 'col2']]
:Retrieves multiple columns as a DataFrame.
Example: Access the
Name
andCity
columns.
df.iloc[]
:Selects rows and columns by integer-based index positions.
Example: Select the first 3 rows (index 0 to 2) and columns 1 (
Age
) and 2 (City
).
df.loc[]
:Selects rows and columns by labels or applies conditions.
Example 1: Select rows where the
Age
column is greater than 30 and retrieveName
andSalary
.Example 2: Select all columns for a specific row by its index label.
# Data Selection
import pandas as pd
# Create sample data
data = {
'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve'],
'Age': [25, 30, 35, 40, 22],
'City': ['New York', 'Los Angeles', 'Chicago', 'Houston', 'Phoenix'],
'Salary': [70000, 80000, 120000, 90000, 75000]
}
# Create a DataFrame
df = pd.DataFrame(data)
# ------------------------------
# Data Selection Examples
# ------------------------------
# 1. Access a single column as a Series
print("Accessing the 'Name' column:")
print(df['Name'])
print("\n")
# 2. Access multiple columns as a DataFrame
print("Accessing 'Name' and 'City' columns:")
print(df[['Name', 'City']])
print("\n")
# 3. Select rows/columns by index positions using iloc
print("Selecting specific rows and columns using iloc (rows 0 to 2, columns 1 and 2):")
print(df.iloc[0:3, 1:3]) # Rows 0 to 2, columns 1 to 2
print("\n")
# 4. Select rows/columns by labels or conditions using loc
print("Selecting rows where 'Age' > 30 and specific columns using loc:")
print(df.loc[df['Age'] > 30, ['Name', 'Salary']]) # Rows with Age > 30 and specific columns
print("\n")
print("Selecting a specific row and all columns using loc (row with label 3):")
print(df.loc[3]) # Row with index label 3
'''
OUTPUT
Accessing the 'Name' column:
0 Alice
1 Bob
2 Charlie
3 David
4 Eve
Name: Name, dtype: object
Accessing 'Name' and 'City' columns:
Name City
0 Alice New York
1 Bob Los Angeles
2 Charlie Chicago
3 David Houston
4 Eve Phoenix
Selecting specific rows and columns using iloc (rows 0 to 2, columns 1 and 2):
Age City
0 25 New York
1 30 Los Angeles
2 35 Chicago
Selecting rows where 'Age' > 30 and specific columns using
loc:
Name Salary
2 Charlie 120000
3 David 90000
Selecting a specific row and all columns using loc (row with label 3):
Name David
Age 40
City Houston
Salary 90000
Name: 3, dtype: object
'''