Pandas Quiz: Test Your Knowledge#
Part 1: Data Creation#
What function would you use to create a one-dimensional labeled array in Pandas?
a)
pd.DataFrame()
b)
pd.Series()
c)
pd.read_csv()
d)
pd.to_excel()
Which function creates a two-dimensional labeled table in Pandas?
a)
pd.DataFrame()
b)
pd.Series()
c)
pd.pivot()
d)
pd.melt()
Part 2: Data Input/Output (I/O)#
Which function reads a CSV file into a DataFrame?
a)
pd.read_csv()
b)
pd.read_sql()
c)
pd.read_excel()
d)
pd.to_csv()
If you need to export a DataFrame to an Excel file, which function should you use?
a)
pd.read_excel()
b)
pd.to_csv()
c)
pd.to_excel()
d)
pd.read_csv()
Part 3: Data Inspection#
Which function provides a summary of a DataFrame, including data types and non-null counts?
a)
df.head()
b)
df.describe()
c)
df.info()
d)
df.shape
How would you return the dimensions (number of rows and columns) of a DataFrame?
a)
df.describe()
b)
df.shape
c)
df.dtypes
d)
df.head()
Part 4: Data Selection#
What function allows you to select rows or columns based on index positions?
a)
df.loc[]
b)
df.iloc[]
c)
df['column_name']
d)
df.groupby()
How would you access multiple columns (e.g., ‘col1’ and ‘col2’) in a DataFrame?
a)
df[['col1', 'col2']]
b)
df['col1']
c)
df.loc[]
d)
df.iloc[]
Part 5: Data Cleaning#
Which function detects missing values in a DataFrame?
a)
df.dropna()
b)
df.notnull()
c)
df.isnull()
d)
df.fillna()
What function replaces missing values with a specified value?
a)
df.dropna()
b)
df.fillna(value)
c)
df.rename()
d)
df.replace()
Part 6: Data Transformation#
To sort rows of a DataFrame based on a specific column, which function would you use?
a)
df.groupby()
b)
df.sort_index()
c)
df.sort_values(by='column')
d)
df.apply()
Which function groups data for aggregation or transformation?
a)
df.pivot_table()
b)
df.groupby()
c)
df.astype()
d)
df.corr()
Part 7: Data Aggregation#
Which function computes the mean of numeric columns in a DataFrame?
a)
df.sum()
b)
df.mean()
c)
df.mode()
d)
df.median()
How would you calculate the cumulative sum of numeric values in a DataFrame?
a)
df.cumsum()
b)
df.sum()
c)
df.mean()
d)
df.count()
Part 8: Merging and Reshaping#
If you need to combine two DataFrames based on a common column, which function should you use?
a)
pd.concat()
b)
pd.merge()
c)
df.join()
d)
df.melt()
What function converts a DataFrame from wide format to long format?
a)
pd.pivot()
b)
df.melt()
c)
df.pivot_table()
d)
pd.concat()
Part 9: Statistical Operations#
Which function calculates the correlation between numeric columns?
a)
df.cov()
b)
df.var()
c)
df.corr()
d)
df.std()
How would you compute the variance of numeric columns?
a)
df.corr()
b)
df.var()
c)
df.cumsum()
d)
df.median()
Part 10: Time Series Functions#
What function converts data into a datetime object in Pandas?
a)
pd.to_datetime()
b)
df.resample()
c)
df.shift()
d)
df.groupby()
Which function aggregates time series data in Pandas?
a)
df.shift()
b)
pd.to_datetime()
c)
df.resample()
d)
df.groupby()
Answer Key (for self-assessment):
b | 2. a | 3. a | 4. c | 5. c | 6. b | 7. b | 8. a | 9. c | 10. b | 11. c | 12. b | 13. b | 14. a | 15. b | 16. b | 17. c | 18. b | 19. a | 20. c