CSCI 132 Basic Data Structures

James Goudy

Nov 03, 2022

CONTENTS

Java Language 3
Java Language 5
NetBeans Installation 7
2.1 Three Main Steps o o v i i e e e e e e e e e e e e e e e e e 7
22 Install OpenJDK e 7
2.3 Set the Environmental Variables in Windows o 8
2.4 Install Apache NetBeans e 9
JAVA Introduction 11
3.1 Keyldeas o . oL e e e 11
32 Readings o oL e 11
3.3 HISIOTY .« . v v o e e e e e e e e e e e e e e e e e e 11
34 Program Features L e e e e e 12
3.5 IDE - Integrated Development Environment 12
Java Basics 13
4.1 KeyTOpiCS . . v v o o e e e e e e e e e e e e e e 13
Readings 15
5.1 Comments oot e e e e e e e e e e e e e e e 15
5.2 Variables e 15
5.3 OPErators v i i e e e e e e e e e e e e e e e e e e 17
54 Order Of Operations v vt v vttt e e e e e e e e e e 17
5.5 Incrementors and Decrementors Lo e e e e e e 18
5.6 Escape Characters i v v i i e e e e e e e e e e e e e 18
5.7 Comparative Operators e e e e e e e e 19
5.8 Logical Operators e e e 19
5.9 Concatenation v v v v e 20
Variable Lecture Code 21
6.1 Keyldeas o L e e e 21
6.2 Readings 21
6.3 Printing e e e 21
6.4 Getting Input From The Console e e 21
First Program 25
7.1 Keyldeas o o e e e e e e e e e 25
7.2 Readings o o e e e e e e e e e e e 25
Second Program 29

10

11

12

13

14

15

16

17

18

19

8.1 Observations o i i e e
82 LectureCode e e

Functions

9.1 Keyldeas e
9.2 Readings e e
9.3 Definition e
9.4 Concepts e

Decision Trees

10.1 Keyldeas
10.2 Readings e
10.3 Observationst it e e e
104 LectureCode e
105 InClass 0 e e e

Switch Statement

I11.1 Keyldeas i e i e e
11.2 Readings i i it e e
11.3 LectureCode o o v i ittt

String Functions

12.1 KeylIdeas o o e

Number Formats

13.1 Keyldeas o e

Iteration / Loops

14.1 Keyldeas i e e
142 Readings o i i i i e e e
143 Lecture e
144 TypesOf Loops o v i it ittt
145 Example BasicLoops
146 LoopToControlMenu
14.7 Loops For Printing AGrid

Exception Handling

15.1 Keyldeas i e e
152 Readings v i i i i e e e

File, Folder - Creation and Deletion

16.1 Keyldeas i e
16.2 LectureCode i i e e

10 Read CSV File

17.1 Keyldeas o o i e e
17.2 LectureCode i i i i i e e

Arrays

181 Keyldeas o i e e
182 Readings e
183 Concepts e
184 LectureCode oo i

ArrayLists

19.1 Keyldeas

33
33
33
33
34

41
41
41
41
42
45

47
47
47
47

55
55

59
59

63
63
63
63
64
64
65
67

69
69
69

71
71
71

77
77
77

83
83
83
83
86

91

20

21

22

23

24

25

26

27

28

29

19.2 Readings o i e e e e e e e e e e e e e e 91

19.3 ConCepts . . v v v v it e e e e e e e e e e e e e e e e e 91
19.4 Lecture Code v i i i e e e e e e e e e e e 92
Overloading 95
20.1 Lecture Code o v i v i e e e e e e e e e e e e e e 95
Classes and Objects 97
21,1 Keyldeas o o e e e e e e e e e e 97
21.2 Readings v i e e e e e e e e e 97
213 COnCeptS . . v v v e e e e e e e e e e e e e e e e e e 97
21.4 Setters and GEUEIS v v v v i i e e e e e e e e e e e e e e e e e 99
21.5 Methods o e e e e e e e e e e e e e 100
21.6 DogCompleted Code i i e e e e e e e e e 102
21.7 In-class Exercise Suggestion i i e e e e e e e e e e e 104
Classes - Inheritance 105
22.1 Keyldeas o o e e e e e e e e e e 105
222 Readings o i e e e e e e e e e 105
Concepts 107
23.1 Lecture Code o v i it e e e e e e e e e e e e e e e 107
Abstract Classes 115
24.1 Keyldeas o o i e e e e e e e e e e e e 115
242 Readings i e e e e e e e e e e e e e 115
243 Lecture Code v v it e e e e e e e e e e e e e 115
Lambda Functions 117
25.1 Keyldeas o o e e e e e e e 117
252 Readings i i e e e e e e e e e 117
253 Lecture Code e e e e e e 118
Recursion 121
26.1 Key TOpICS . . . v v v it e e e e e e e e e e e e e e e e e 121
26.2 Readings oo e e e e e e e e 121
Videos 123
27.1 Lecture Code o v o v i e e e e e e e e e e e e e 123
272 Lecture Code Il o e 126
Regex - Using Java Matches 129
28.1 From Stack Overflow e 129
28.2 Lecture Code i e e e e e e e e 129
28.3 Regular Expression References e 131
Reference Reading 133
29.1 Additional supplemental topics. Lo e e e 133
29.2 Building Large Java Applications e e e e e 133
293 AntVsMaven Vs Gradle e e e e e e e e 139
29.4 Polymorphism in Java (With Examples) o 143
29.5 Unable To Run .JAR Files in Windows 10/ 11 ? Here’s the Solution 157
29.6 End Of Section o ot i e e e e e e e e e e e e e 171

II Data Structures

30 Data Structures and Algorithms

30.1

Textbooks and Online SoOurces v i i e e e e e

31 Array Techniques

31.1
31.2

Array Warp Aroundo e e e e e e e e e
Array Addand Delete Data e

32 Big O Notation

32.1
322
323
324
325

Keyldeas e e
Reading L L
VIdeos oo e
Visualizing BigOnotation L e e e
Big O Notation - Explained e

33 Linked Lists

34

35

33.1
332
333
334
335
33.6
33.7
33.8

Benefitsof alinked list e
Disadvantagesof alinked list L
Typesof linked lists L e
Singly Linked List o 0 e e e e e
Doubly Linked List o o e e e e e e e e e e e e e e

Stacks and Queues

34.1
342
343
34.4
34.5

KeylIdeas e
Discussion e e e
Stack - Using Array of Objects o o i i e e e e e
Queue - Using Array Of ObjJects o o v i i e e e e e e e e e e e e e
Priority Queue e e e e e e e e e e

Sorting Algorithms

35.1
352
35.3
35.4

Visualizations v v o e e e e e e e e e e e e e e e e e e
Bubble Sort e e e e e e
Performance e e e e

173

175
175

177
177
180

185
185
185
185
185
191

195
195
195
195
196
207
214
221
231

243
243
243
244
247
252

CSCI 132 Basic Data Structures

This class introduces the JAVA language and basic data structures. Some of the basic data structures include arrays,
linked lists, and some sorting.

“Always code as if the guy who ends up maintaining your code will be a violent psychopath who knows where
you live” - John Woods

CONTENTS 1

CSCI 132 Basic Data Structures

2 CONTENTS

Part I

Java Language

CHAPTER
ONE

JAVA LANGUAGE

An introduction to the Java Language
Java is C++ without the guns, clubs and knives. James Gosling

C makes it easy to shoot yourself in the foot. C++ makes it harder. But when you do, it blows your whole
leg off. Bjarne Stroustrup

CSCI 132 Basic Data Structures

6 Chapter 1. Java Language

CHAPTER
TWO

NETBEANS INSTALLATION

2.1 Three Main Steps

1. Install Open JDK
2. Set the Environmental Variables in Windows
3. Install Apache NetBeans.

For fresh installs, it has to be done in this order.

2.2 Install Open JDK

1. Go to https://openjdk.java.net/Click on the version you wish to install.

1. Uncompress the zip or gz file. For Windows, copy the java-xx file to c:\Program Files in a folder called java.
C:\Program Files\Java\java-xx.

https://openjdk.java.net/Click

CSCI 132 Basic Data Structures

2.3 Set the Environmental Variables in Windows

1. Depress the Windows Key and release then type ENV. This will open the window to change the environmental
variables.

| Computer Name Hardware Advanced System Protection Remate

You must be logged on as an Administrator to make most of these changes.

Pefomance

Visual effects, processor scheduling, memory usage, and virtual memany

Settings...
User Profiles
Desktop settings related to your sign-n
I)
Settings...
Startup and Recovery
System startup, system failure, and debugging information
: Settings...

Environment Varables...

QK Cancel Apphy
— — — — —_—— T ——
1. Set a PATH: Select Control Panel and then System.
1. Click Advanced and then Environment Variables.
2. Add the location of the bin folder of the JDK installation to the PATH variable in System Variables.

3. Click Path in the System Variables (bottom half), click edit, and browse. Browse to the bin folder and click
ok.”C:\Program Files\Java\jdk-xx\bin”

2. Set JAVA_HOME:

8 Chapter 2. NetBeans Installation

CSCI 132 Basic Data Structures

1. Under System Variables, click New.
2. Enter the variable name as JAVA_HOME.

Warning: JAVA_HOME has to be in all caps.

3. Enter the variable value as the installation path of the JDK (without the bin..
wsub-folder)
4. Click OK.
5. Click OK.

2.4 Install Apache NetBeans

1. Go to https://netbeans.apache.org/
2. Click the download button.
3. Install

Updated May 2022

2.4. Install Apache NetBeans 9

https://netbeans.apache.org/

CSCI 132 Basic Data Structures

10 Chapter 2. NetBeans Installation

CHAPTER
THREE

JAVA INTRODUCTION

3.1 Key ldeas

* History
e Program Features

¢ Integrated Development Environments

3.2 Readings

https://books.trinket.io/thinkjava2/chapter1.html
History of Java

Language Ranking

3.3 History

* Created by James Gosling and a team of developers.

* Released in the fall of 1995Created applets — run on web pages.

11

https://books.trinket.io/thinkjava2/chapter1.html
https://en.wikipedia.org/wiki/Java_(programming_language)#:~:text=Java%20was%20originally%20developed%20by,by%20Sun%20under%20proprietary%20licenses.
https://www.tiobe.com/tiobe-index/

CSCI 132 Basic Data Structures

¢ Was controlled by Sun Microsystems until 2010 then bought out by Oracle.

3.4 Program Features

¢ Object-oriented programming Platform Neutral

* Java programs are transformed into a format called bytecode which can be run by any computer or device running
a java virtual machine

* Java automatically takes care of memory allocations and deallocations. (automatic garbage collection)
* Java does not include pointers.

* Java includes only single inheritance.

3.5 IDE - Integrated Development Environment

3.5.1 NetBeans

* First supported by Sun then by Oracle
* Now part of the Apache Software Foundation (2016)
* Used by lots of corporations

* https://netbeans.apache.org/

3.5.2 Eclipse

* open source
* uses lots of plugins
* first to the game hence a little larger market share

* https://www.eclipse.org/ide/

3.5.3 Others

¢ JDeveloper

¢ IntelliJ Idea

End Of Topic

12 Chapter 3. JAVA Introduction

https://netbeans.apache.org/
https://www.eclipse.org/ide/
https://www.oracle.com/application-development/technologies/jdeveloper.html
https://www.jetbrains.com/idea/

CHAPTER
FOUR

4.1 Key Topics

e Comments

* Variables

 Data types

¢ QOperators

* Order of Operations

¢ Incrementors and Decrementors
 Escape Characters

¢ Comparative Operators

¢ Concatenation

JAVA BASICS

13

CSCI 132 Basic Data Structures

14 Chapter 4. Java Basics

CHAPTER
FIVE

READINGS

https://books.trinket.io/think java/chapter1.html

5.1 Comments

Definition

Comment allows the programmer to document their code. It is not compiled.

5.1.1 Examples

// This is a single line comment

J*
This 1is
a multiline
comment

*/

5.2 Variables

Definition

Variable stores one item of information.

15

https://books.trinket.io/thinkjava/chapter1.html

CSCI 132 Basic Data Structures

5.2.1 Naming Variables

* Start with a letter, underscore or a dollar sign
e Can not start with an number

NO SPACES

¢ CASE SENSITIVE

— All different are different variable names: fname, Fname, fName, FNAME, fnamE

¢ Java as a whole is case sensitive

Declaring A Variable

datatype variableName; datatype variableName = value;

5.2.2 Examples

// declaring variables
int Age;

String First_Name;
boolean Breathing;

//declaring variables and intializing them with a value
int numberOfStates = 50;
double salary = 50000;

// note that strings get double quotes
// chars get single quotes

String dogName = "Spot";

char middleInital = 'A';

boolean isBreathing = true;

Warning: A variable is usually declared once within a set of braces{ }.

16 Chapter 5. Readings

CSCI 132 Basic Data Structures

5.2.3 Data Types

Data Type Memory Space | Max Values

Integer Types - whole numbers

byte8 bits - 1 byte -128 to 128

short 16 bits — 2 bytes | -32,768 to 32,767

int 32 bits — 4 bytes | -2,147,483,648 to 2,147,483,647
long 64 bits — 8 bytes | (+-)9,223,372,036,854,775,808)
Real / Floating Point

float 32 bits - 4 bytes | 1.4 E-45 to 3.4 E+38

double 64 bits - 8 bytes | 4.9 E-324 to 1.7 E 308

Other

boolean true / false - Use as flags

char Individual letters or characters
Acts Like A Variable

String ~ 2 billion characters

Object Store binaries - “anything”

var limited use within functions when datatype is not known

Note: for precise decimals i.e. currency — use java.math.BigDecimal — reason — rounding accuracy

5.3 Operators

Sign | Operations

+ Addition

- Subtraction

* Multiplication

/ Divide

% Modulus (return the remainder of an integer)

5.4 Order Of Operations

* Increment and decrement
¢ Parentheses ()

* Exponents

Y

o 1 -

5.3. Operators

17

CSCI 132 Basic Data Structures

¢ Comparisons > < >=<=== =
* Logical Operations && |l

* Assignment Expressions

5.5 Incrementors and Decrementors

¢ use ++ to add the number 1 to a variable.
¢ use — to subtract the number one from a variable.

Examples

xX++;
aget+;

Y-
salary——;

5.6 Escape Characters

Definition

Escape Character is a backslash \ followed by the character you want to insert into your for printing or inserting into a

string.
Escape Character | Definition
\n new line
\t tab
\b backspace
\r carriage return
\f form feed
\ backslash
¢ single quotation mark
¥ double quotation mark
\d octal
\xd hexadecimal
\ud Unicode character
18 Chapter 5. Readings

CSCI 132 Basic Data Structures

5.7 Comparative Operators

Definition

Comparative Operators evaluate is something is true or false.

Operator | Definition

== Equal to x==y; (NOT x=y)

= Not Equal to x !=y;

< Less Than x <'y;

> Greater Than x>y.

<= Less Than or Equal to x <=y ; (no space between the signs)
>= Greater Than or Equal to x >=y;

5.8 Logical Operators

Definition

Logica Operators connect two or more expression together and evalute to true or false.

Operator | Definition

&& AND (both sides must be true to evaluate to true)

Il OR (only one side must be true to evaluate to true)

5.8.1 Truth Table

x<y&&z>10)

expression 1x<y | operator | expression 2z >10 | outcome
AND

true && true true
true && false false
false && true false
false && false false
OR

true I true true
true I false true
false I true true
false I false false

5.7. Comparative Operators

19

CSCI 132 Basic Data Structures

5.9 Concatenation

Definition

Concatenation is the action of putting strings togeher to form a new string.

5.9.1 Example

String fName = "Bubba";

String 1Name = "Smith";

String fullName = fName + " " + lname;

// Note we concantenate a space " " between the first and last name

End Of Topic

20 Chapter 5. Readings

CHAPTER
SIX

VARIABLE LECTURE CODE

6.1 Key Ideas

* Printing

¢ Getting Information From The Console / Keyboard

6.2 Readings

https://books.trinket.io/think java2/chapter2.html
https://books.trinket.io/think java2/chapter3.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/variables.html

https://jenkov.com/tutorials/java/variables.html

6.3 Printing

To print to the console, the following command is used:
System.out.println(‘‘your text here or variable here”);
System.out.println() will drop the cursor to the next line.

System.out.print() will leave the cursor on the same line at the end of the text.

6.4 Getting Input From The Console

e The library / class java.util.Scanner needs to be imported.
* A scanner is created
¢ Input from the scanner is stored in a variable
— By default, all data from a scanner is a String datatype
— To convert it into an Integer or Double use the parse command;

Example

21

https://books.trinket.io/thinkjava2/chapter2.html
https://books.trinket.io/thinkjava2/chapter3.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/variables.html
https://jenkov.com/tutorials/java/variables.html

CSCI 132 Basic Data Structures

import java.util.Scanner;

public class MyProgram
{
public static wvoid main ()
{
double salary = 0.0;
int age = 0;
String name = "";

//create the scanner
Scanner myScan =

System.out.print ("Enter your name:

salary = myScan.nextLine();

new Scanner (System.in);

")

System.out.print ("Enter your salary: ");

salary =

System.out.print ("Enter your age:
age =

Double.parseDouble (myScan.nextLine ());

")

Integer.parsebDouble (myScan.nextLine());

Example 2

/*
Lecture Code Class
Topic: Variables
*/

package j1_20150902;

import java.util.Scanner;
public class J1_20150902 {

public static void main(String[] args)
//put variables here
//Integer datatypes
int age = 20;

int NumberOfDogs;
short dogage = 7;

long geologicalyears = 200000000;
//Real Numbers

float Salary = 50000;

double SpaceMiles = 0;

float dogYears;

float humanYears;

//Byte

byte Codingblock = 64;

{

(continues on next page)

22

Chapter 6. Variable Lecture Code

CSCI 132 Basic Data Structures

(continued from previous page)

//Boolean
boolean IsItRaining = true;
boolean AmIHungry = false;

//Char
char MiddleInitial = 'C';
char Gender = 'M';

//Strings

String FirstName;

String LastName = "Smith";
String Fruit;

//Constants - values that will not change
//The practice is to put constants in
//ALL CAPS.
final double PI

3.14159265359;

final String MYTITLE = "Code Guru";
)) —m Scanner—————————————————————————
/*

Scanners are used to read information from the keyboard.

Scanner is the key word. "scan" is a name designated by the programmer.
"scan" could be called anything the programmer wishes to name 1it.

"new Scanner (System.in)" is the command to create an object that will
read keystrokes from the keyboard.

*/

Scanner scan = new Scanner (System.in);

//Ask a question or present information to user
//"System.out.println ("your text")" writes a message to the screen
System.out .println("Please enter your first name");

//"scan nextline will read kestrokes until enter key is depressed.
//All keystrokes that are read from the keyboard using "nextline"
//reads that data/keystrokes as the String datatype

FirstName = scan.nextLine();

System.out.println("Hello " + FirstName);

//Get an age
System.out.println("Please enter your age");

age = Integer.parselnt (scan.nextLine());
System.out.println("Your age is " + age);
/*

scan.nextDouble ()

scan.nextInteger ()

scan.nextFloat ()

scan.nextByte ()

Using these, the scanner will read in only the numbers but leave the
"enter" keystroke in the buffer. If the next scanner command 1s
"nextLine ()", it will immediately see the "enter" keystroke that was
in the buffer and not allow the user to enter any data. This is
demonstrated by the following code.

*/

(continues on next page)

6.4. Getting Input From The Console 23

CSCI 132 Basic Data Structures

(continued from previous page)

System.out
System.out

age = scan.

System.out

System.out

Fruit = scan.nextLine();

System.out

System.out

age = scan.

using nextInteger example ————————————————————
.println ("\n\n***** nextInteger Example ****");
.println("Please enter your age");
nextInt ();
.println("Your age is " + age);

.println("Please enter your favorite fruit");

//nextline sees the enter from nextInt and
//executes the line immediately — not
//allowing the user to enter a fruit.
.println("Your favorite fruit is" + Fruit);

Fixing the
.println ("\n\n***** nextInteger Example ****");
.println ("***x** The Fix **x*x*x");
.println("Please enter your age");
nextInt ();

nextInteger previous example —-—————————————————

scan.nextLine(); //This will clear the "enter" keystroke from the buffer

System.out

System.out

Fruit = scan.nextLine();

System.out

/*

.println("Your age is " + age);

.println("Please enter your favorite fruit");
//The user can now enter a fruit.
.println("Your favorite fruit is " + Fruit);

It is better to use the following:

yourVariableName = Double.parseDouble (scannerName.nextLine())
yourVariableName = Integer.parselnt (scannerName.nextLine())
yourVariableName = Float.parseFloat (scannerName.nextLine ())

*/

//Calculating dog years

System.out
System.out
humanYears
dogYears =
System.out

.println("\n\nWe are going to calculate dog years");
.println("Enter your human age");

= float.parseFloat (scan.nextLine());

humanYears / 7.0f;

.println("Your age in dogyears is " + dogYears);

//Exit program

System.out

.println ("\n\nBye Bye");

End Of Topic

24

Chapter 6. Variable Lecture Code

CHAPTER
SEVEN

FIRST PROGRAM

7.1 Key ldeas

¢ Declaring variables

* Creating a scanner

* Printing to the console

« Storing information from the keyboard to a variable

¢ Casting data from a String to a number

7.2 Readings

https://books.trinket.io/think java2/chapter3.html

Programs are written functions/methods. In the example below there is only one function called main().

Definition

main() is the function where the program starts and finishes.

Print to the console, the following command is used:

¢ System.out.println("your text here or variable here");
// Variable names do not get quotes around them.

¢ System.out.println() will move the cursor to the next line.
¢ System.out.print() will leave the cursor on the same line at the end of the text.
Get Input From The Console

 The library / class java.util.Scanner needs to be imported.

import java.util.Scanner;

¢ Create scanner

25

https://books.trinket.io/thinkjava2/chapter3.html

CSCI 132 Basic Data Structures

Scanner myScan = new Scanner (System.in);

// NOTE: myScan is your name for the scanner

// You can name it anything you want as long as it
// follows the rules for variable names.

¢ Input from the scanner is stored in a variable
— By default, all data from a scanner is a String datatype

— To convert it into an Integer or Double use the parse command;

System.out.print ("Please enter your first name: ");
firstname = myScan.nextLine();

System.out.print ("Please enter your salary: ");
firstname = Double.parseDouble (myScan.nextLine());

Warning: Do not use .nextDouble(), nextInt() without using a .nextLine() to ensure the “return” is
removed from the keyboard buffer.

Programming Pattern

Notice the programing pattern:
1. Asks for information from the user with a System.out.print().
2. Collect the information from the user using a scanner and store it in a variable.
3. Calculate the data

4. Return an answer using the System.out.print().

Note: The filename of the project is always the name of the public class. In the example below, the project name is
J1_FirstProgrA

/*
Names: Jim Goudy
Program: First_Program

Note: When you are naming projects - do not use spaces.
*/

import java.util.Scanner;
public class Jl_FirstProgrA ({
public static void main (String[] args) |
//variables
String xFirstName, xLastName;

String xCity;
String xNickName = "Ramone';

(continues on next page)

26 Chapter 7. First Program

CSCI 132 Basic Data Structures

(continued from previous page)

double xInches = 0;

double xAnswer 0;

double xCentimeterss = 0;
double xNuml, xNum2, xNum3;

//Create a scanner
Scanner myScan = new Scanner (System.in);

//Create a greeting

System.out.print ("Please enter"
+ " your name: ");

xFirstName = myScan.nextLine();

System.out.println("Enter your city");
xCity = myScan.nextLine();

System.out.println ("\n\nGreetings " + xFirstName + " from " + xCity);

//convert Inches To Centimeters

System.out.print ("\nPlease \nenter a \nmeasurment in inches : ");
xInches = Double.parseDouble (myScan.nextLine());

xAnswer = xInches * 2.54;

System.out.println("The is answer is" + xAnswer);

//Centers To Inches - divide 2.54

System.out.print ("\n\nPleaseenter a measurment in centimeters : ");
xCentimeterss = Double.parseDouble (myScan.nextLine());

xAnswer = xCentimeterss / 2.54;

System.out.println("The is answer is" + xAnswer);

//Add three numbers
System.out.println("Add three numbers\nEner the first number");
xNuml = Double.parseDouble (myScan.nextLine());

System.out.println ("Ener the second number");
xNum2 = Double.parseDouble (myScan.nextLine());

System.out.println("Ener the third number");
xNum3 = Double.parseDouble (myScan.nextLine ());

xAnswer = xNuml + xNum2 + xNum3;
System.out.println("\nThe sum of three numbers is " + xAnswer);
Va3

System.out.println ("Enter a number");

xInches = myScan.nextDouble();
System.out.println("Enter your FirstName xxxxx— ");
xFirstName = myScan.nextLine();

NOTE: Suppose the user enters the number 42. They literally press the
"4m key, the "2" key and the "enter" key. Because the
"myScan.nextDouble ()" only takes the numbers, it does not

take the enter key — which is left in the keyboard buffer.

nextLine () excutes when it sees an enter key in the buffer. Since the

(continues on next page)

7.2. Readings 27

CSCI 132 Basic Data Structures

(continued from previous page)

nextDouble () does not clear the enter key, it is still left over for
the nextLine (), which will excecute immediately and not allow the user
to enter their name.

*/

//Message to let the user know the program is finished.
System.out.println ("Thank you for using my software");

End Of Topic

28

Chapter 7. First Program

CHAPTER
EIGHT

SECOND PROGRAM

8.1 Observations

Note the following:
¢ The programmer name and project title are in the comments.
* We can put the project requirements in the comments as well. In bigger projects this would be a separate document.

* Variables are declared at the top of the function - main() . When we have more functions the variables will always
go at the top, with the exception of var.

* Note the programming pattern

— Ask a question

System.out .print ("Question?");

Store the response in a variable using a scanner

Make a calculation

Show the answer using another

System.out.print ("Answer is " + x);

» Note the commenting.

8.2 Lecture Code

J/*
Name: James Goudy
Project: Example 2

Program requirements
Greeting: Name and major

Problem 1 : Calculate the circumference of a circle
Formula: C = nORD

C - circumference

n - pi 3.14

R - Radius

(continues on next page)

29

CSCI 132 Basic Data Structures

(continued from previous page)

D - Diameter

Problem 2 : Calculate the volume of a prism

Formula: vV = 1wd
V - Volume
1 - length
w — width
d - depth

Exit Message

*/

import java.util.Scanner;
public class JavaIntro_ExampleProgram2 ({
public static void main (String[] args) {

//Greeting Variables
String xName; //variable to hold name
String xMajor; //variable to hold major

//Problem 1 varialbes
double xCircumference = 0;
final double xPI = 3.14;
double xRadius = 0;

double xDiameter = 0;

//Problem 2 variables
double xVolume = 0;
double xLength = 0;
double xWidth = 0;
double xDepth = 0;

//Create a scanner to collect keyboard information
Scanner myScanner = new Scanner (System.in);

/e
//Greeting

System.out.println("Please Enter your name: "); //ask the question
xName = myScanner.nextLine(); //collect the answer
System.out .println("Please enter your major: "); //ask the question
xMajor = myScanner.nextLine(); //collect the answer

//Display the greeting

System.out.println("Hello " + xName + " from " + xMajor);

/) e ——— Problem l—-———————————————————————————
System.out.println ("\nProblem 1 - Circumference");

System.out.print ("\nPlease enter the radius: "); //ask the question
xRadius = Double.parseDouble (myScanner.nextLine()); //collect the answer

(continues on next page)

30 Chapter 8. Second Program

CSCI 132 Basic Data Structures

(continued from previous page)

System.out.print ("\nPlease enter the diameter: "); //ask the question
xDiameter = Double.parseDouble (myScanner.nextLine()); //collect the answer

//calculate the answer
xCircumference = xPI * xRadius * xDiameter;

//Display the answer
System.out.println("\nThe circumerence is " + xCircumference);

S/ e Problem 2-————=——————————————————————
System.out.println("\nProblem 2 - Volume of a prism");

System.out.print ("\nPlease enter the length: "); //ask the question
xLength = Double.parseDouble (myScanner.nextLine()); //collect the answer
System.out.print ("\nPlease enter the width: "); //ask the question

xWidth = Double.parseDouble (myScanner.nextLine()); //collect the answer
System.out.print ("\nPlease enter the depth: "); //ask the question
xDepth = Double.parseDouble (myScanner.nextLine()); //collect the answer
//calculate the answer

xVolume = xLength * xWidth * xDepth;

//Display the answer
System.out.println("\nThe volume is " + xVolume);

/) ——— Exit Messasge
System.out.println ("\nThank you for using Goudy Software");

End Of Topic

8.2. Lecture Code 31

CSCI 132 Basic Data Structures

32 Chapter 8. Second Program

CHAPTER
NINE

FUNCTIONS

9.1 Key Ildeas

¢ Definition
¢ Readings

» Examples

9.2 Readings

https://books.trinket.io/think java2/chapter4.html

https://www.geeksforgeeks.org/methods-in-java/?ref=gcse

9.3 Definition

It is important to segment the code, break it into chunks. This is done by creating functions. Using functions have the
following advantages:

» Reusability - a function will allow code to be reused when needed.

Helpful Tip

If you have coded the same thing more than once, that code should be turned into a function.

* Organization - It allows large complex programs to be broken down into smaller steps.

 Testing - Functions can be easily tested for errors.

Tip: The term functions and methods are usually interchangeable. The do the same thing. However, the term method is
usually applied to a function in a class that has a public interface - meaning it can be called by the created object of that
class.

33

https://books.trinket.io/thinkjava2/chapter4.html
https://www.geeksforgeeks.org/methods-in-java/?ref=gcse

CSCI 132 Basic Data Structures

9.4 Concepts

* Function form that takes parameters and returns a variable / data

* Function form that takes parameters and returns nothing (displays answer in function)
 Function form that takes no parameters and returns a variable / data

* Function form that takes no parameters and returns nothing (does everything within the function)

Structure Of A Function

Function

static datatype functionName (arguments)

{
// 1f the function does a calculation
// the datatype will always match the
// answer of that calculation

// datatypes are int, long, float, double

// boolean,chr, String, Object

// void is used when the function does

// return anything to whatever other function called it

// arguments are the values sent
// to the function - they are optional

//code goes here

// 1f there is a datatype define then
// then there will always be a return
// with a variable of the same datatype
return aVariable;

static void main ()

{
//call the function
functionName (arguments)

Functions are always called by other functions, including main().

Suppose a programmer wants to write a function to convert inches to feet. There are four ways to write the function
pending if the function is supplied arguments or not and whether the function or the main program displays the answer.

34 Chapter 9. Functions

CSCI 132 Basic Data Structures

Op- | With Arguments(arguments) Without Arguments () - empty

tions

Re- static double inchesFeet(double | static double inchesFeet(){ double ans = 0; inches =
turn | inches){ double ans = 0; ans = inches | 0; System.out.print(“Enter inches: “); inches = Dou-
an- / 12.0; return ans;} ble.parseDouble(myScanner.nextLine()); ans = inches / 12.0;
swer return ans; }

Dis- | static void inchesFeet(double | static double inchesFeet(){ double ans = 0; inches =
play | inches){ double ans = 0; ans = inches | 0; System.out.print(“Enter inches: “); inches = Dou-
an- / 12; System.out.print(“Answer is “+ | ble.parseDouble(myScanner.nextLine()); ans = inches / 12.0;
swer | ans);} System.out.print(“Answer is “+ ans);}

Example

static double inchesFeet ()

{
double ans = 0;

inches = 0;

System.out.print ("Enter inches: ");

inches = Double.parseDouble (myScanner.nextLine());
ans = inches / 12.0;

System.out.print ("Answer is "+ ans);

Example

/*
Programmer: James Goudy
Project: Function Lecture Code

*/

import java.util.Scanner;

public class Function_Demo_Revl

{

//functions can here
//Add two numbers - Functions requires 2 numbers
//and returns the total
static double add2nums_a (double numl, double num?2)
{
//Note — double numl and double num2 act as if
//they are within the braces

//declare variables
double ans;

ans = numl + num2;

return ans;

//add two numbers B

(continues on next page)

9.4. Concepts 35

CSCI 132 Basic Data Structures

(continued from previous page)

//Add two numbers — Functions requires 2 numbers
//returns nothing, and displays the answer
static void add2nums_b (double numl, double num2)
{

double ans;
ans = numl + num2;

System.out.println("\n\nB The answer for add2nums_b is " + ans);

//add two numbers C
//Add two numbers - the asks for the numbers
//and returns the answer
static double add2nums_c ()
{
//variabls
double ans;
double numl = 0;
double num2 0;

//create a scanner
Scanner myScan = new Scanner (System.in);

System.out.println(" C Please enter first number");
numl = Double.parseDouble (myScan.nextLine());

System.out.println("C Please enter second number");
num?2 = Double.parseDouble (myScan.nextLine());

ans = numl + num2;

return ans;

//add two numbers d
//Add two numbers — the function does everything
//Function asks for the numbers and displays the answer
static void add2nums_d()
{
double ans;
double numl
double num2

Il
o o
~

~

//create a scanner
Scanner myScan = new Scanner (System.in);

System.out.println(" D Please enter first number");
numl = Double.parseDouble (myScan.nextLine());

System.out.println ("D Please enter second number");

num2 = Double.parseDouble (myScan.nextLine());
ans = numl + num2;
System.out.println("\n\nB The answer for add2nums_d is " + ans);

(continues on next page)

36

Chapter 9. Functions

CSCI 132 Basic Data Structures

(continued from previous page)

/7

InClass Dogyears

static double dogYears_a (double humanYears)

{

double ans

0;

ans

humanYears * 7;

return ans;

static void dogYears_d()
{

double ans 0;
double humanYears

0;

//create a scanner
Scanner myScan

new Scanner (System.in);

System.out.println(" Please enter human years");

humanYears

ans

humanYears * 7;

System.out.println("DogYears

// Greetings A
static String Greetings_A(String
{

String ans = "";

ans "Welcome " + firstName

return ans;

public static void main (String[]
{

//variables
double xNuml = 0;
double xNum2 0
double xAns

’

0;

double xhumanYears

0;

String xFirstName, xLastName,
int xPlayerNumber = 0;

//create a scanner

Double.parseDouble (myScan.nextLine());

D - Dogs years is equal to " + ans);

firstName, String lastName, int PlayerNum)

+ " " + lastName + " player " + PlayerNum;

args)

xAnsString;

(continues on next page)

9.4. Concepts

37

CSCI 132 Basic Data Structures

(continued from previous page)

Scanner myScan = new Scanner (System.in);

//Base Code

System.out.println("Add two numbers");
System.out.println("Please enter first number");
xNuml = Double.parseDouble (myScan.nextLine());

System.out.println("Please enter second number");

xNum2 = Double.parseDouble (myScan.nextLine());
xAns = xNuml + xNum2;
System.out.println("The answer is " + xAns);

//Example A
System.out.println ("\n\n-————————- Example A ————————— \n\n") ;

System.out .println(" A Please enter first number");
xNuml = Double.parseDouble (myScan.nextLine());

System.out.println("A Please enter second number");

xNum2 = Double.parseDouble (myScan.nextLine());
xAns = add2nums_a (xNuml, xNum2) ;
System.out.println("A The answer for add2nums_A is " + xAns);

//Example B

System.out.println("\n\n-—————-——- Example B ————————— \n\n") ;
System.out.println(" B Please enter first number");
xNuml = Double.parseDouble (myScan.nextLine());

System.out.println ("B Please enter second number");
xNum2 = Double.parseDouble (myScan.nextLine());

add2nums_b (xNuml, xNum2) ;

//EXample C

System.out.println ("\n\n-————————- Example ¢ ————————— \n\n") ;
xAns = add2nums_c () ;
System.out.println("C The answer for add2nums_c is " + xAns);

//Example D
System.out.println("\n\n-————————- Example d ————————- \n\n");

add2nums_d () ;

// Kook kA ko kA ok ok ok ok Ak Inclass LR R R i e b b b e e b b b b b g b b b g b b b b b b i g
// Inclass — Dog Years

// in the style of A - parenthesis are have arguments return answer
// in the style of D — parenthesis are empty - function does everything

(continues on next page)

38

Chapter 9. Functions

CSCI 132 Basic Data Structures

(continued from previous page)

System.out.println ("\n\nGreeting Please enter your first name");
xFirstName= myScan.nextLine () ;

System.out.println("Please enter your last name");
xLastName = myScan.nextLine();

System.out.println("Please enter your player number");
xPlayerNumber = Integer.parselnt (myScan.nextLine());

xAnsString = Greetings_A (xFirstName, xLastName, xPlayerNumber) ;

System.out.println (xAnsString);

System.out.println("Thank you for using Goudy Software - good bye");

//functions can also go here

End Of Topic

9.4. Concepts 39

CSCI 132 Basic Data Structures

40 Chapter 9. Functions

CHAPTER
TEN

10.1 Key ldeas

If Statements Switch Statements String Functions

10.2 Readings

https://books.trinket.io/think java2/chapter5.html

DECISION TREES

https://www.geeksforgeeks.org/decision-making- javaif-else-switch-break-continue- jump/?ref=Ibp

10.3 Observations

Definition

The is statement has the following form:

if (condition){

}

if (condition)
{

//
}

if (condition)

/7

/7

if (condition)
{
//

runs

code

code

code

if true

here runs if true

here runs if false

here runs if true

(continues on next page)

41

https://books.trinket.io/thinkjava2/chapter5.html
https://www.geeksforgeeks.org/decision-making-javaif-else-switch-break-continue-jump/?ref=lbp

CSCI 132 Basic Data Structures

(continued from previous page)

}

else if (condition)

{
// code here runs 1if true
}
else if (condition)
{
// code here runs 1if true
}
else
{
// code here runs 1if false
// the else is optional
}

Warning: In order to compare Strings, you must use .equal(argument)

String stringl = "aaa";
String string2 = "bbb";

if (stringl.equals(string2))
{
// Do something

Tip: Note in the code below how a string is converted to an integer - Integer.parselnt() and to a double Dou-
ble.parseDouble()

10.4 Lecture Code

//James Goudy
//If demo
import java.util.Scanner;
public class If_Demo {
static void if one (double num) {

//Example is checking for true only
System.out.println ("Example 1 \n");

if (num < 100) {
System.out.println(num + " is less than 100 \n");

(continues on next page)

42 Chapter 10. Decision Trees

CSCI 132 Basic Data Structures

(continued from previous page)

static void if_ two (double num) {

//This example is checking for both true and false
System.out.println ("Example 2 \n");

if (num < 100) {

System.out.println(num + " is less than 100 \n");
} else {
System.out.println(num + " is greater than 100 \n");

static void if_three (double num) {

//This example is an example of an else if statement
System.out.println ("Example 3 \n");

if (num < 10) {

System.out.println(num + " is less than 10 \n");
} else if (num < 20) {
System.out.println(num + " is less than 20 \n");
} else if (num <= 30) {
System.out.println(num + " is less than 30 \n");
} else {
System.out.println(num + " is greater than 30 \n");

static void if_range (double salary) {

//check to see if a number is within a range of numbers
System.out.println ("Example Range of Numbers \n");

if (salary > 0 && salary <= 50000) {
System.out.println (" You are poor \n");

} else if (salary > 50000 && salary <= 200000) {
System.out.println(" You are middle class \n");

} else {
System.out.println(" You are rich \n");

static void if_string(String vehicle) {
//you should always convert your comparasion to
//a consistent state. Comparisons for strings are
//case sensitive.

vehicle = vehicle.toLowerCase();

//String is an object so Java requres

(continues on next page)

10.4. Lecture Code 43

CSCI 132 Basic Data Structures

(continued from previous page)

//the .equals to compare the equality of
//strings. In other language you may
// be able to use the ==

if (vehicle.equals ("boat")) {
System.out.println("You are a boater \n");

} else if (vehicle.equals("car")) |
System.out.println("You are a driver \n");

} else if (vehicle.equals("plane™)) {
System.out.println("You are a pilot \n");

} else {
System.out .println ("That wasn't a choice \n");

public static void main(String[] args) {

//variables

double numl = 0;
double mySalary = 0;
String myVehicle;

//create scanner
Scanner scl = new Scanner (System.in);

//input number
System.out.println("Enter a number");
numl = Integer.Parselnt (scl.nextLine());

//1if example one

// 1f the number is less than 100 the message will appear
System.out.println("If Example - checking for true only\n");
if_one (numl) ;

//1if example two
//this example for both a true and false condition
System.out.println("If Example Two - "

+ "checking for a both true and false\n");
if_two (numl) ;

//1f example three
//this example an else if example
System.out.println("Else if example - "
+ "checking for multiple conditions \n");
if_three (numl);

//if example - check for a number within a range
System.out.println("Checkin to see if a number is within a range\n");
System.out.println ("Enter your salary\n");

mySalary = Double.ParseDouble(scl.nextLine());

if_range (mySalary);

//An example using a string
System.out.println("This is an example of comparing strings \n");

(continues on next page)

44

Chapter 10. Decision Trees

CSCI 132 Basic Data Structures

(continued from previous page)

System.out.println("Please enter your favorite "
+ "vehicle - boat, car, plane \n");
scl.nextLine();

myVehicle = scl.nextLine();
if_string(myVehicle);

//exit program
System.out.println("Press enter to exit \n");
scl.nextLine();

10.5 In Class

Post This Exercise

re there expletive

r abrasive conten Is everyone fully

clothed?
Yes Mo

Lo

Do Mot Do Mot

Have you been Post Post or
partying? ,
Mo Mo 3
l’ l l’ T
Do Mot
Ok to post Post Ok to post Do Mot
Post

End Of Topic
10.5. In Class 45

CSCI 132 Basic Data Structures

46 Chapter 10. Decision Trees

CHAPTER
ELEVEN

SWITCH STATEMENT

11.1 Key ldeas

¢ Switch Statement

11.2 Readings

If / Switch

Swtich Statement

11.3 Lecture Code

Definition

A switch statement acts like an if statement, but there are definite choices. The switch statement will allow specific code
to run pending the choice. Swtich statements are usually used in building menus, but can be used anywhere where there
is a definite choice.

11.3.1 Example

/* Switch / Menu Demo
This is a demo program to demonstrate a design pattern for creating
a menu system in the console environment.

:)———- Bob Ross Coding —--—— :)
Jim Goudy
*/

import java.util.Scanner;
public class Menu_Demo {

// Happy Function 1
static void HappyFunctionl () {
System.out.println ("\n\nThis is happy function 1");

(continues on next page)

47

https://www.geeksforgeeks.org/decision-making-javaif-else-switch-break-continue-jump/?ref=lbp
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/switch.html

CSCI 132 Basic Data Structures

(continued from previous page)

// Happy Function 2
static void HappyFunction2 () {
System.out.println("\n\nThis is happy function 2");

// Happy Function 3
static void HappyFunction3 () {
System.out.println ("\n\nThis is happy function 3");

// This function creates a menu system.
static void menu () {

// variables
int choice = 0; // hold user choice

// Scanner for user input
Scanner myScan = new Scanner (System.in);

// display the user choices
System.out.println ("\nMENU\n"

+ "\nl. Happy Function 1"

+ "\n2. Happy Function 2"

+ "\n3. Happy Function 3"

+ "\nPlease choose a function 1,2 or 3");
choice = Integer.parselnt (myScan.nextLine());

// take the choice stored in choice and use it in the switch
// case values can be an int, char or enum
switch (choice) {
case 1:
HappyFunctionl () ;
break;
case 2:
HappyFunction2 () ;
break;
case 3:
HappyFunction3 () ;
break;
default:
// This is optional
// default is used if the user entered any
// number that was note 1,2 or 3
System.out.println ("\nThat wasn't a choice");

public static void main (String[] args) {

// variables
String quit = "n";

// Scanner for user input
Scanner myScan = new Scanner (System.in);

(continues on next page)

48

Chapter 11. Switch Statement

CSCI 132 Basic Data Structures

(continued from previous page)

// quit has to be initialized with the value of n

// so the loop will run at least once. Putting the menu
// call in a while statement will allow the user to run
// the program as many times as they wish.

while (quit.equals("n")) |
// call the menu
menu () ;

// prompt the user if they want to quit
System.out.println ("\nWould you like to quit - y or n");
quit = myScan.nextLine () .toLowerCase () ;

// Inform the user the program is done executing
System.out.println("Good Bye");

11.3.2 More Menu Examples

package switch_menuexamples;

import java.util.Scanner;

public class Switch_MenuExamples {

/**
* @param args the command line arguments
*/

public static void main (String[] args) |

//create variables

int UserChoicel = 0;
char UserChoice2 = 'A"';
String UserChoice3 = "";

//create a scanner for input
Scanner myScanner = new Scanner (System.in);

//Example One
//Menu using integer choices
System.out.println("Example 1 using integer choices");
System.out.println("Choose one of the following:" +
"\nl. Move the character to the left" +
"\n2. Move the character to the right" +
"\n3. Move the character straight ahead" +
"\n4. Quit" +
"\nPlease choose 1, 2, 3 or 4:"
)i
UserChoicel = Integer.parselnt (myScanner.nextLine());

(continues on next page)

11.3. Lecture Code 49

CSCI 132 Basic Data Structures

(continued from previous page)

switch (UserChoicel)
{
case 1:
System.out.println("Character moves to the left");
break;
case 2:
System.out .println("Character moves to the right");
break;
case 3:
System.out.println("Character moves straight");
break;
case 4:
System.out.println("Quit Program");
break;
default:
//if user chooses a value that 1is not 1,2,3 or 4
System.out.println("That was not a choice");
break;

//Example two
//Menu using char choices
System.out.println("\n\nExample 2 using char choices");
System.out.println ("Choose one of the following:" +

"\nL Move the character to the left" +

"\nR Move the character to the right" +

"\nS Move the character straight ahead" +

"\nQ Quit" +

"\nPlease choose L, R, S or Q:"

)i

//NOTE the "toUpperCase ()" This will convert anything typed
//from the keyboard into uppercase.
UserChoice2 = myScanner.nextLine () .toUpperCase().charAt (0);

switch (UserChoice?)
{
case 'L':
System.out.println("Character moves to the left");
break;
case 'R':
System.out.println ("Character moves to the right");
break;
case 'S':
System.out.println("Character moves straight");
break;
case 'Q':
System.out.println("Quit Program");
break;
default:
//if user chooses a value that is not L, R, S or Q
System.out .println("That was not a choice");
break;

//Example three
//Menu using string choices

(continues on next page)

50 Chapter 11. Switch Statement

CSCI 132 Basic Data Structures

(continued from previous page)

System.out.println ("\n\nExample 3 using string choices");
System.out.println("Choose one of the following:" +

"\nLeft Move the character to the left" +
"\nRight Move the character to the right" +
"\nStraight Move the character straight ahead" +
"\nQuit Quit" +

"\nPlease choose Left, Right, Straight or Quit:"
)i
//NOTE the "toUpperCase ()" This will convert anything typed
//from the keyboard into uppercase. Converting all the strings
//to uppercase ensures we are comparing uppercase to uppercase
UserChoice3 = myScanner.nextLine () .toUpperCase();

switch (UserChoice3)
{
case "LEFT":
System.out.println("Character moves to the left");
break;
case "RIGHT":
System.out.println("Character moves to the right");
break;
case "STRAIGHT":
System.out.println("Character moves straight");
break;
case "QUIT":
System.out.println("Quit Program");
break;
default:
//1f user chooses a value that
//is not Left, Right, Straight or Quit
System.out.println("That was not a choice");
break;

//Inform the user the program is done executing
System.out.println ("\n\nGood Bye - Press enter to exit");
myScanner.nextLine () ;

11.3.3 New format of switch statement after version 14+

/*
* Switch Statement
* As of Java 14 went to the "->"
*/

package com.mycompany.switch_statement_revised;

import java.util.Scanner;

/**

(continues on next page)

11.3. Lecture Code 51

CSCI 132 Basic Data Structures

(continued from previous page)

*

* @Qauthor jgoudy

*/

public class Switch_statement_revised ({

static int menu () {
int choice = 0;
try {

Scanner myScan =

System.out.print ("Menu\n"

new Scanner (System.in);

+ "1. Pick Larry\n"

+ "2. Pick Curly\n"

+ "3. Pick Moe\n"

+ "Please pick 1,2 or 3: "y

choice =

return choice;
} catch (Exception e) {
return -1;

static void Larry () {
System.out .println("You chose

static void Curly () {
System.out.println("You chose

static void Moe () {
System.out.println("You chose

static void switch_examplel () {
// this format is the same 1in
// and in all version of java

int choice = -1;

Integer.parselnt (myScan.nextLine());

Larry");
Curly");
Moe") ;

most languages

System.out.println ("Example 1");

choice = menul();
switch (choice) {
case 1:
Larry () ;
break;
case 2:
Curly();
break;
case 3:
Moe () ;
break;

(continues on next page)

52

Chapter 11. Switch Statement

CSCI 132 Basic Data Structures

(continued from previous page)

default:
System.out.println ("That wasn't a choice");

System.out.println("\n-—————————————————————————— \n");
static void switch_example2 () {

// This format of a switch effective version 14+

int choice = -1;

System.out.println ("Example 1");
choice = menu();

switch (choice) {
case 1 —> Larry();
case 2 —-> Curly();
case 3 —> Moe();

default —>
System.out.println ("That wasn't a choice");

System.out.println("\n-—————————————————————————— \n");

public static void main (String[] args) {
switch_examplel () ;

switch_example?2 () ;

End Of Topic

11.3. Lecture Code 53

CSCI 132 Basic Data Structures

54 Chapter 11. Switch Statement

CHAPTER
TWELVE

12.1 Key ldeas

¢ Convert To Uppercase

* Covert To Lowercase

¢ Length of a string

* Substring - get parts of a string

* CharAt - retreive a character out of a string

* Replace a character

STRING FUNCTIONS

Vi
String Functions
This program demonstrates some of the common
string functions

Jim Goudy
*/

public class String_Functions {
public static void main (String[] args) {

// Variables

String xInputString;
String xInputString2;
String xTemp;

int xLength = 0;

char xChar;

// Data for input strings
xInputString = "Codingjava'";
xInputString2 = "Feed";

// Original Word

System.out.println ("\nConvert To Uppercase");
System.out.println(xInputString);

// Get the length of a string

(continues on next page)

55

CSCI 132 Basic Data Structures

(continued from previous page)

System.out.println ("\nGet lenght of a string");
xLength = xInputString.length();

System.out.println(xInputString + " is " + xLength + " characters long.");

// Convert To Uppercase
System.out.println("\nConvert To Uppercase");
xInputString = xInputString.toUpperCase();
System.out.println(xInputString);

// Convert To Lowercase
System.out.println("\nConvert To Lowercase");
xInputString = xInputString.toLowerCase();
System.out.println (xInputString);

// Replace a character

System.out.println ("\nReplace a character");
xInputString = xInputString.replace('g', 'b');
System.out .println (xInputString);

// Replace a charater - notices how it

// turns Feed into Food

System.out.println ("\nReplace a character");
xInputString2 = xInputString2.replace('e', 'o'");
System.out .println(xInputString2);

// Returns a string starting at the position

// NOTE: positions for this command start at 0

// Bumpoint —--> this command will return point
System.out.println("\nRetreive part of a string");
xTemp = xInputString.substring(3);

System.out .println (xTemp) ;

// Returns a string starting at the position

// NOTE: positions for this command start at 0

// Orignial word is bumpoint
System.out.println("\nRetrieve Partical Strings");

xTemp = xInputString.substring(0, 3); // pulls out bum
System.out.println (xTemp) ;

xTemp = xInputString.substring(3, 8); // points
System.out .println (xTemp) ;

// note how you can use length in the following expression
xTemp = xInputString.substring(3, xInputString.length());
System.out .println (xTemp) ;

// Retrieve a char from a string

// NOTE scanners only retrive strings. There are no methods
// for chars

System.out.println("\nRetrieve a char");

xChar = xInputString.charAt (0); // retreives the B as a char
System.out .println (xChar);

xChar = xInputString.charAt(3); // retreive the P as a char
System.out .println (xChar);

// check the equalality of a string

(continues on next page)

56

Chapter 12. String Functions

CSCI 132 Basic Data Structures

(continued from previous page)

// Note that String is an object and not a native datatype

// Hence - we cannot use == for String

// we must use the .equal ()

System.out.println ("\nCheck For Equality");

if (xInputString.equals (xInputString2)) {
System.out.println ("It matches");

} else {
System.out.println ("NO match");

// Another example
if (xInputString.equals ("Montana™)) A
System.out.println ("It matches");
} else {
System.out .println ("NO match");

// Another example
xTemp = "Montana";
if (xTemp.equals ("Montana")) A
System.out.println ("It matches");
} else {
System.out.println ("NO match");

End Of Topic

12.1. Key Ideas 57

CSCI 132 Basic Data Structures

58 Chapter 12. String Functions

CHAPTER
THIRTEEN

13.1 Key Ildeas

¢ Limiting decimal places

¢ Leading zeros

o Left padding

¢ Formatting numbers to have comas
¢ Formatting phone numbers

» Formatting dates and time

Example Code

NUMBER FORMATS

J*
Number Formats
Programmer: James Goudy

*/

import java.math.BigInteger;
import java.time.LocalDate;
import java.time.LocalDateTime;
import java.util.Scanner;

public class NumberDateFormats

{
//A function for left padding
public static String LeftPadding(String input,
int totalWidth, char paddingCharacter)

String output = null; //Outpout String
int PaddingLength = 0;

//Set oupt to input
output = input;

//calculate the amount of padding
PaddingLength = totalWidth - input.length();

//Add padding in front of input

(continues on next page)

59

CSCI 132 Basic Data Structures

(continued from previous page)

for (int cntr

{

0; cntr <PaddingLength; cntr++)

output paddingCharacter + output;

return output;

/**
* @param args the command line arguments
*/
public static void main (String[] args)
{
double answer = 0;
double numl = 1.0;
double num2 = 3.0;
String phoneNumber = "5554065555";
double bigNumber = 123456789.1277;

//DateTime (int year,
// int hours,
LocalDateTime myDate

int month, int day,
int minutes, int seconds)
LocalDateTime.of (2030, 8,

5, 20, 7,

answer = numl / num2;

/7

System.out.println("Answer is "

+ answer) ;

//output using place holders
System.out.println ("\nOutput using placeholders");

System.out.println(numl + " \\ " + num2 + + answer) ;

" n

//The first line is using the "ToString"
//The second line is using String.format ()
// Limit answer to two decimal places

// # means 1if there is a number display it
System.out.println("\nLimit Answer To Two Decimal Places")
System.out .println("Answer is " + String.format ("%.2f",

// Leading Zero — use 0 or 0's

System.out.println ("\nLimit answer to 3 decimal places"
+ "\nand include 2 leading zeros");

System.out.println("Answer is " + String.format ("%$06.3f",

// Format a telephone number

System.out.println ("\nFormat a telephone number");

System.out .println(String.format (" (%s)
phoneNumber.substring (0, 3),
phoneNumber.substring (3, 6),
phoneNumber.substring (6, 10)));

o o n
$s—%s",

// format number to include commas

// 0's used after a decimal point

// means always display that those decimal places
System.out.println ("\nFormat number to include commas");

’

answer)) ;

answer)) ;

(continues on next page)

60

Chapter 13.

Number Formats

CSCI 132 Basic Data Structures

(continued from previous page)

System.out.println(String.format ("%, £f",
//System.out.println(String.format ("{0:0,0.00}",

bigNumber)) ;

bigNumber)) ;

//Date Examples
System.out.println("\n\nDate Examples");
System.out.println(String.format ("$15tm/%15td/%$1Sty", myDate));
System.out.println(String.format ("$15tM/%15td/%$1StY", myDate));
System.out.println(String.format ("1tA $1StB $1Std, %$1$tY", myDate));
System.out.println(String.format ("$1sta $1Stb %$1$td, %$1stY", myDate));
System.out.println(String.format ("1tB %$15td, %1Sty "

+ "$1StT:%1stM:%1StS $1Stp", myDate));
System.out.println(String.format ("1tB %$1Std, %1Sty "

+ "S1StH:1tM:%1StS", myDate));
//Left Padding Example
System.out.println(LeftPadding (String.valueOf (122.33), 10, '=-"));
System.out .println(LeftPadding (String.valueOf(2.33), 10, '=-"));
System.out.println(LeftPadding (String.valueOf(88882.56), 10, '-'));
System.out.println(LeftPadding (String.valueOf (

String.format ("$06.2f", answer)), 10, '-'));
System.out.println (LeftPadding (String.valueOf (

String.format ("$03.2f", answer)), 10, '=-"));
System.out.println(LeftPadding (String.valueOf (

String.format ("$1.4f", answer)), 10,
// Exit Program

System.out.println ("\n\nPress Enter To Quit");

Vs
Answer 1is 0.3333333333333333

Output using placeholders
1.0\ 3.0 0.3333333333333333

Limit Answer To Two Decimal Places
Answer 1is 0.33

Limit answer to 3 decimal places
and include 2 leading zeros
Answer is 00.333

Format a telephone number
(555) 406-5555

Format number to include commas
123,456, 789.127700

Date Examples
08/05/30
07/05/2030

SR

(continues on next page)

13.1. Key ldeas

61

CSCI 132 Basic Data Structures

(continued from previous page)

Monday August 05, 2030
Mon Aug 05, 2030
August 05, 2030 08:07:09 pm
August 05, 2030 20:07:09
-——=122.33
2.33
--88882.56
-——=000.33
ffffff 0.33
-———0.3333

Press Enter To Quit

*/

End Of Topic

62

Chapter 13. Number Formats

CHAPTER
FOURTEEN

ITERATION / LOOPS

14.1 Key ldeas

* Do Loop

¢ While Loop

e For Loop

* For Each Loop

* Loop Pattern for Menus / Programming Structure

* Loops for grids

14.2 Readings

https://books.trinket.io/think java2/chapter6.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/while.html

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/while.html

14.3 Lecture

Definition

Iteration / Loops: the repetition of a sequence of computer instructions a specified number of times or until a condition
is met. Merriam Webster

63

https://books.trinket.io/thinkjava2/chapter6.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/while.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/while.html
https://www.merriam-webster.com/dictionary/iteration

CSCI 132 Basic Data Structures

14.3.1 Java Loops

Iteration has several purposes:

* Reusability - loops allow us to repeat code as often as we wish in the form that we can write it once and run it
many times.

* Loops allow us to traverse the items in a list, array, or data structure.

14.4 Types Of Loops

Java has four main types of loops
* Do Loop - This loop will always run once
¢ While Loop - This loop runs while a condition is true
* For Loop - This loop runs a specific amount of times

¢ For Each Loop - This loop is a form of the for-loop. It is set up to easily iteration of each item in an array, list,
or data structure.

14.5 Example Basic Loops

J*
Loop Lecture Code
Programmer: James Goudy

*/

public class Loops {
public static void main(String[] args) {
int cntr = 0;

//Do Loop This loop will always run once
do
{

System.out.println(cntr + " do loop");

//We have to increment a counter
//otherwise our while statement will never
//go to false and we will be in a endless loop.
cntr++;

}while (cntr < 2000);

//while loop - This loop will always check for true before running
cntr = 0;

while (cntr < 2000)
{

System.out.println(cntr + " while loop");

(continues on next page)

64 Chapter 14. Iteration / Loops

CSCI 132 Basic Data Structures

(continued from previous page)

cntr++;

//We have to increment a counter

//otherwise our while statement will never
//go to false and we will be in a endless loop.

//for statments are excellent i1f we have

//a known number of cycles to loop.

//Also we create a cntr, check for true and increment
//the counter all on one line.

for (int cntr2 = 0; cntr2 < 2000; cntr2++)

{
System.out.println(cntr2 + " for loop");

14.6 Loop To Control Menu

* Note this is using a while-loop and a switch statement.

* This is a programming style that fits 90% of your programs. Note that the functions are not calling the menu()
Sfunction.

/* Switch /

Program: Menu Lecture

Programmer: Jim Goudy

This is a demo program to demonstrate a design pattern for creating a menu system in.
~«the console environment.

:)—-——— Bob Ross Coding --—-— :)

*/
package menu_lecture;

import java.util.Scanner;
public class Menu_Lecture {

//Happy Function 1
static void HappyFunctionl () {
System.out.println ("\n\nThis is happy function 1");

//Happy Function 2
static void HappyFunction2 () {
System.out.println ("\n\nThis is happy function 2");

//Happy Function 3
static void HappyFunction3 () {
System.out.println ("\n\nThis is happy function 3");

(continues on next page)

14.6. Loop To Control Menu 65

CSCI 132 Basic Data Structures

(continued from previous page)

//This function creates a menu system.
static void menu () {

//variables

int choice = 0; //hold user choice

//Scanner for user input
Scanner myScan = new Scanner (System.in);

//display the user choices
System.out.println ("\nMENU\n"

+ "\nl. Happy Function 1"

+ "\n2. Happy Function 2"

+ "\n3. Happy Function 3"

+ "\nPlease choose a function 1,2 or 3");
choice = Integer.parselnt (myScan.nextLine());

//take the choice stored in choice and use it in the switch

switch (choice) {

case 1:
HappyFunctionl () ;
break;

case 2:
HappyFunction2 () ;
break;

case 3:
HappyFunction3 () ;
break;

default:
//default is used if the user entered any
//number that was note 1,2 or 3
System.out.println("\nThat wasn't a choice");

public static void main (String[] args) |

//variables
String quit = "n";

//Scanner for user input
Scanner myScan = new Scanner (System.in);

//quit has to be initialized with the value of n

//so the loop will run at least once. Putting the menu
//call in a while statement will allow the user to run
//the program as many times as they wish.

while (quit.equals("n")) {

//call the menu
menu () ;
//prompt the user if they want to quit

System.out.println ("\nWould you like to quit - vy or n");

quit = myScan.nextLine () .toLowerCase () ;

(continues on next page)

66 Chapter 14. Iteration / Loops

CSCI 132 Basic Data Structures

(continued from previous page)

//Inform the user the program is done executing
System.out.println("Good Bye");

14.7 Loops For Printing A Grid

/*

Program: Loop Lecture Grid

Programmer: James Goudy

This program demonstrates how to write a grid

using loops. The important note is that the

counters in the loops act as coordinate to the row and columns
of the x's that are being printed out.

*/

package loops_lecture_grid;
public class Loops_Lecture_Grid {
public static void main(String[] args) {

//Variables
String xx = "x";

int Colcntr = 0; //This is our column counter
int ColStop 5; //This is the actual number of
//columns for the grid

int Rowcntr = 0; //This is our row counter
int RowStop = 5; //This is the actual number of
//rows for the grid

//loop to control the number of rows
while (Rowcntr < RowStop) {
//loopt to control the number of columns
while (Colcntr < ColStop) {
//Note the print. If a println is used
//all of the starts will print down / "vertical"
System.out.print ("x");

//Increment the column counter to the next column
Colcntr++;

//this represents the end of the row

//the cursor needs to be put on the next row
//so a println will be used.
System.out.println("");

//Next the Colcntr needs to be reset to zero
Colcntr = 05

(continues on next page)

14.7. Loops For Printing A Grid 67

CSCI 132 Basic Data Structures

(continued from previous page)

//Advance the rowcnter to the next

Rowcntr++;

row

}
}
}
End Of Topic
68 Chapter 14. lteration / Loops

CHAPTER
FIFTEEN

15.1 Key ldeas

e Try/ Catch

15.2 Readings

https://books.trinket.io/think java2/chapter15.html#sec187

EXCEPTION HANDLING

Definition

Try and Catch - This statement allows to so encapsultate a part of code that has the possibility to error or crash. The try

/ catch will prevent the program from crashing.

J*
Try and Catch Demo
by James Goudy

*/

import java.util.Scanner;
public class Jl_Try_Catch {
public static void main (String[] args) |
//Variables
char xquit = 'n';
String zz;
String xinput;

char ww;
double xx;

//create a scanner
Scanner scan = new Scanner (System.in);

zz = "Top";

(continues on next page)

69

https://books.trinket.io/thinkjava2/chapter15.html#sec187

CSCI 132 Basic Data Structures

(continued from previous page)

// try and catch statments allow us to try code that could
// possibly fail. We put the code that could fail in the "try" part.
// If it fails, we then catch the error in the "catch"
// Exception e 1is the actual error message.
try {
//the word only has 3 letters and we are looking for the 10 letter
// which it doesn not have.
ww = zz.charAt (9);
System.out.println("The char is " + ww);

} catch (Exception e) {
//1f there is an error, then this code will rund
System.out.println(e);
System.out.println("You had an error - cant you count - try again");
} finally {
//finally is optional and it will always run
System.out.println(" any code in the finally section
+ " will always run.");

n

//Example 2

//This also demonstrates how we can use a char

//and use it in a while statement.

while (xquit != 'y'") {
//this try and catch will catch any errors 1f anything
//but a number 1is entered.

try {
System.out.println("Enter a number");
xxX = Double.parseDouble (scan.nextLine());

System.out.println("You entered " + xx);

} catch (Exception e) {
System.out.println("You did not enter a number");

System.out.println ("\nWould you like to quit y / n ");

xinput = scan.nextLine () .toLowerCase () ;

//notice how we are taking one letter out and making it a char
//remember that positions that at the number 0

xquit = xinput.charAt (0);

System.out.println ("\n\nGoodbye");

End Of Topic

70

Chapter 15. Exception Handling

CHAPTER
SIXTEEN

FILE, FOLDER - CREATION AND DELETION

16.1 Key ldeas

* Objectives

¢ Global Variables

* Creating directories

¢ Deleting Directories

¢ Creating files

* Reading Files

* Deleting Files

16.2 Lecture Code

/*

* Programmer: James Goudy
* Project: File, folder creation and deletion

*/

package io_demo;

/**

*

* Qauthor jgoudy

*/
J*

* Objectives

* Global Variables

* Creating directories
* Deleting Directories

* Creating files
* Reading Files
* Deleting Files

*/
import
import
import
import
import

java.
java.
java.
java.
java.

io.BufferedReader;
io.BufferedWriter;
nio.charset.StandardCharsets;
nio.file.Files;
nio.file.Path;

(continues on next page)

71

CSCI 132 Basic Data Structures

(continued from previous page)

import java.nio.file.Paths;
import java.nio.file.StandardOpenOption;

public class IO_Demo {

//Gloabal variable - used by all functions
static String xStrPath;
//static double[][] myArray;

//Create a directory
static void ioCreateDirectory() {

boolean checkDir;

//import java.nio.file Path

//import java.nio.file Paths - helper class
//Path sets a path for a file or directory
Path xPath = Paths.get (xStrPath);

//true 1f the file does exist;
//false if the file does not exists or its existence cannot be determined

checkDir = Files.exists (xPath);

if (checkDir) {
System.out.println("Directory Already Exists");
return;

try {
//Creates a directory — note that
//it uses the path that was just created
//Note that Files requires it to be in
//try - catch statement
Files.createDirectory (xPath);
} catch (Exception e) {
System.out.println("Could not create directory");

//Delete a directory
//Note: in order to delete a directory it must be empty first
static void ioDeleteDirectory () A

Path xDeletePath = Paths.get (xStrPath);

try {
Files.delete (xDeletePath);
} catch (Exception e) {
System.out.println ("Could not delete the direcotry");

//Write a text file

static void ioCreateTextFile () {
xStrPath = "c:\\zJavaTemp\\myFilel.txt";
String textl;
String text2;

(continues on next page)

72 Chapter 16. File, Folder - Creation and Deletion

CSCI 132 Basic Data Structures

(continued from previous page)

boolean fileCheck;
Path pathNewFile = Paths.get (xStrPath);
fileCheck = Files.isRegularFile (pathNewFile)
& Files.isReadable (pathNewFile)
& Files.isExecutable (pathNewFile);
try {

BufferedWriter fw = null;

if (fileCheck) {

fw
= Files.newBufferedWriter (pathNewFile,
StandardCharsets.UTF_S8,
StandardOpenOption.APPEND) ;
} else {
fw

= Files.newBufferedWriter (pathNewFile,
StandardCharsets.UTF_16,
StandardOpenOption.CREATE) ;

* Charatersets

* StandardCharsets.UTF_8;

* StandardCharsets.US_ASCII;
* StandardCharsets.UTF_16;

* Opening and deleting files

* StandardOpenOption.CREATE_NEW;

* StandardOpenOption.APPEND;

* StandardOpenOption.DELETE_ON_CLOSE;

* StandardOpenOption.TRUNCATE_EXISTING;
* StandardOpenOption.DELETE_ON_CLOSE;

//Note for windows \r\n has to be used in combination
//For universal newlines, use the newline method

textl = "xx This is how you write a file. ";
text2 = " (You store user input in a variable then write it. \r\n";
for (int cntr = 0; cntr < 10; cntr++) {

fw.write (textl);
fw.newlLine () ;
fw.write (text2);

fw.flush();
fw.close();

} catch (Exception e) {
System.out.println("Could not write the file");

(continues on next page)

16.2. Lecture Code 73

CSCI 132 Basic Data Structures

(continued from previous page)

//Read a text file
static void ioReadFile () {
xStrPath = "c:\\zJavaTemp\\myFilel.txt";
String intextl;
String text2;
boolean fileCheck;

Path pathOpenFile = Paths.get (xStrPath);

//check if the files is real,
//the file is readable, the file 1is not locked
fileCheck = Files.isRegularFile (pathOpenFile)
& Files.isReadable (pathOpenFile)
& Files.isExecutable (pathOpenFile);

if (!fileCheck) {
System.out.println("File could not be opened");
return;

try {

//We will use the newBufferedReader

//to read in our text file

BufferedReader fr = Files.newBufferedReader (
pathOpenFile,
StandardCharsets.UTF_8);

while ((intextl = fr.readLine()) != null) {
System.out.println(intextl);

fr.close();
} catch (Exception e) {
System.out.println("Could not read the file");

static void ioDeleteFile() {
xStrPath = "c:\\zJavaTemp\\myFilel.txt";

//Get the path of the file to delet
Path xPath = Paths.get (xStrPath);

try {
Files.delete (xPath);
System.out.println("File successfully deleted");
} catch (Exception e) {
System.out.println("File not deleted");

(continues on next page)

74

Chapter 16. File, Folder - Creation and Deletion

CSCI 132 Basic Data Structures

(continued from previous page)

public static void main (String[] args) |
char xdeleteDir = 'n';

//Note that this is a global variable
xStrPath = "c:\\zJavaTemp";

ioCreateDirectory();

xdeleteDir = 'n';
if (xdeleteDir == 'y') |
ioDeleteDirectory();

//Creating and and Reading a Textfile
ioCreateTextFile () ;
ioReadFile () ;

// Toggle the comment to delete the file
// ioDeleteFile();

End of Topic

16.2. Lecture Code 75

CSCI 132 Basic Data Structures

76 Chapter 16. File, Folder - Creation and Deletion

CHAPTER
SEVENTEEN

10 READ CSV FILE

17.1 Key ldeas

¢ Read a comma-separated file

17.2 Lecture Code

Vs
* Programmer: James Goudy
* Project: IO_CSV_Demo Rev 2 20220630
*/

package com.company.my.jl_io_csv_demo_rev2;
import java.io.BufferedReader;

import java.io.FileReader;
import java.io.IOException;

/**

*

* @author jgoudy
*/

class readCSV_BufferedReader ({

BufferedReader br;
FileReader fr;

int numCols;

int numRows;

String filePath;

public readCSV_BufferedReader (String filePath) {
this.filePath = filePath;
// creating a buffered reader in its own function

// this will allow the resetting of the buffered reader
createBufferedReader (filePath);

(continues on next page)

77

CSCI 132 Basic Data Structures

(continued from previous page)

private void createBufferedReader (String thefilePath) {

// BufferedReader requires a try and catch
try {
br = new BufferedReader (new FileReader (thefilePath));
} catch (IOException ex) |
System.out.println(ex.getMessage());

private void getArrayDimensions () {

// this function is used only for calculating the
// dimension of an array

String inputLine = "";
try {

// skip the header row
br.readLine () ;

// count rows
while ((inputline = br.readLine()) != null) {
numRows++;

//reset buffered reader
createBufferedReader (this.filePath);

// calculate columns

inputLine = br.readLine();

String[] inputArrary = inputLine.split(",");
numCols = inputArrary.length;

// optional prints to verify Rows and cols
// System.out.println("Rows = " + numRows);

// System.out.println("Cols = " + numCols);

} catch (IOException ex) {
System.out .println (ex.getMessage());

public String[][] readDataIntoArray() A

// this function will return a 2 dimensional array
// not this can be modified to read in data and save

(continues on next page)

78 Chapter 17. 10 Read CSV File

CSCI 132 Basic Data Structures

(continued from previous page)

}

// it to a linked 1list. In that case, all the dataArray
// code can be eliminated. One we still need to do the
// input array code.

getArrayDimensions () ;

// instantiate the new array

String[][] dataArray = new String[numRows] [numCols];
String inputLline;

int rowCount = 0;

// reset buffered reader
createBufferedReader (this.filePath);

try {

// skip the header row
br.readLine () ;

// br.readline reads the input file line
// and stores it in inputline within the while statement

while ((inputline = br.readLine()) != null) {

// split the inputline into a string array
String[] inputArrary = inputLine.split(",");

// add the data from the inputArray to the dataArray
for(int 1 = 0; i < inputArrary.length; i++)
{

dataArray[rowCount] [1] = inputArrary[i];
}
System.out.println("");
rowCount++;

} catch (IOException ex) {
System.out.println(ex.getMessage());

return dataArray;

public int getNumCols () {

return numCols;

public int getNumRows () {

return numRows;

// end of class

(continues on next page)

17.2. Lecture Code 79

CSCI 132 Basic Data Structures

(continued from previous page)

public class Jl1_TIO_CSV_Demo_Rev2 ({
static String[][] theArray;

public void printArray(int rows, int cols)
{
for (int r = 0; r < cols; r++) {
for(int ¢ = 0; ¢ < cols; c++)
{
System.out.print (theArray([r][c] + " ");

I3
System.out.println("");

public static void main(String[] args) {

// file location
String dataFile = "c:\\z\\citydata.csv";

// instantiate a new object
readCSV_BufferedReader br = new readCSV_BufferedReader (dataFile);

theArray = new String[br.getNumRows ()] [br.getNumCols ()];

try {
// This will over write the current array
// with the returned array with the new dimensions
theArray = br.readDatalIntoArray();

} catch (Exception e) {

System.out .println(e.getMessage());

// print the array
printArray (br.getNumRows () ,br.br.getNumCols ()) ;

// exit
System.out.println ("\nbye");

Vas

citydata.csv

Key, Town, State, Population

1,New York,New York, 18713220

2,Los Angeles,California, 12750807
3,Chicago, I11inois, 8604203
4,Miami,Florida, 6445545
5,Dallas, Texas, 5743938
6,Philadelphia, Pennsylvania, 5649300

(continues on next page)

80 Chapter 17. 10 Read CSV File

CSCI 132 Basic Data Structures

(continued from previous page)

7,Houston, Texas, 5464251
8,Atlanta, Georgia, 5449398

9,Washington,District of Columbia, 5379184

10, Boston,Massachusetts, 4688346
11,Phoenix,Arizona, 4219697

12, Seattle, Washington, 3789215
13,S8an Francisco,California, 3592294
14,Detroit,Michigan, 3506126

15, San Diego,California, 3220118
16,Minneapolis,Minnesota, 2977172
17, Tampa, Florida, 2908063

18, Denver, Colorado, 2876625
19,Brooklyn, New York,2559903

20, Queens, New York, 2230722
21,Riverside,California, 2107852
22,Baltimore,Maryland, 2106068
23,Las Vegas,Nevada,2104198

24, Portland, Oregon, 2074775

25,5an Antonio, Texas, 2049293
26,St. Louis,Missouri,2024074
27,Sacramento,California, 1898019
28,0rlando,Florida, 1822394

29,San Jose,California, 1798103
30,Cleveland, Ohio, 1710093
31,Pittsburgh,Pennsylvania, 1703266
32,Austin, Texas, 1687311
33,Cincinnati,Ohio, 1662691
34,Kansas City,Missouri, 1636715
35,Manhattan, New York, 1628706

36, Indianapolis, Indiana, 1588961
37,Columbus, Ohio, 1562009

38, Charlotte, North Carolina, 1512923
39,Virginia Beach,Virginia, 1478868
40, Bronx, New York, 1418207
41,Milwaukee, Wisconsin, 1365787

42, Providence, Rhode Island, 1203230
43, Jdacksonville,Florida, 1181496
44, Salt Lake City,Utah,1098526

45, Nashville, Tennessee, 1081903
46,Richmond, Virginia, 1075798
47,Memphis, Tennessee, 1066967
48,Raleigh, North Carolina, 1038738
49, New Orleans, Louisiana, 1020886
50, Louisville, Kentucky, 1005654

*

*/

End of Topic

17.2. Lecture Code

81

CSCI 132 Basic Data Structures

82 Chapter 17. 10 Read CSV File

CHAPTER
EIGHTEEN

ARRAYS

18.1 Key ldeas

* Storing sets of data

e Arrays

18.2 Readings

https://books.trinket.io/think java2/chapter7.html

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

Definition

Array - An array is a data structure that contains a group of elements of a fixed size. They are used to store sets of data
like golf scores, budgets, etc. where data is stored like a “grid”.

18.3 Concepts
18.3.1 Visualization

Array
Index 0 1 2 3 4

Contents | Montana | Colorado | Indiana | Washington | Idaho

Index - the index identifies the location of the data.

Element - the box itself is referred to as an element

// This 1s a one dimensional array
String|[] states = new String[5];

// set values - include the index and value

(continues on next page)

83

https://books.trinket.io/thinkjava2/chapter7.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

CSCI 132 Basic Data Structures

(continued from previous page)

states[0] = "Montana'";
states[1] = "Colorado";
states[2] = "Indiana";
states[3] = "Washington";
states[4] = "Idaho";

//alternative method

String[] states2 = {"Montana","Colorado","Indiana","Washington","Idaho"};

// retrieve value

String astate;

astate = states[2];
System.out .print (astate);

// output is Indiana

Tip: In the majority of programming languages, the first index starts at 0.

18.3.2 2 Dimensional Array

Assume the following array. It is tracking states, their capitals, state bird, and state rock. It is named stateData.

The “[]” are there for reference only. The squares “[]” indicate the coordinate system. They are not part of the actual
data - they are there for reference only. Note that the coordinates are [row, column].

Indexes O 1 2

0 [0,0] [0,1] [0,2]
Montana Colorado Ohio

1 [1,0] [1,1] [1,2]
Helena Denver Columbus
2 [2,0] [2,1] [2,2]
Meadowlark| Lark Cardinal
3 [3,0] [3,2] [3,2]
Agate Aquamarine| Flint

// create the 2 dimensional array
String[] [] stateData =

(continues on next page)

84 Chapter 18. Arrays

CSCI 132 Basic Data Structures

(continued from previous page)

{"Montana", "Colorado", "Ohio"},
{"Helena", "Denver", "Columbus"},
n n n n n” 3 n
{"Meadolark", "Lark", "Cardinal"},

{"Agate", "Aquamarine", "Flint"}

bi

// output some data

String myData = "";

myData = stateDatal[l][1];

System.out.println("Capital of Colorado is " + myData);

myData = stateData[2][0];
System.out.println("The state bird of Montana is " + myData);

myData = stateDatal[0][2];
System.out.println("The state is " + myData);

// change Montana's state bird to hawk

myData = "Hawk";

stateData[2] [0] = myData;

myData = stateData[2][0];

System.out.println("The state bird of Montana is " + myData);

// to iterate through the 2 dimensional array
int Rows = 4;
int Cols = 3;

// this for statement controls the rows
// note that r will keep track of the index of the rows

for(int r = 0; r < Rows; r++)
{
// this for statement controls the columns
// note that c will keep track of the index of the columns
for(int ¢ = 0; ¢ < Cols; c++)
{
System.out.print (stateDatalr] [c] + " ");
}
// code is now at the end of a "row"
// move the cursor down
System.out.println();
}
J*
Output

Capital of Colorado is Denver

The state bird of Montana is Meadolark
The state is Ohio

The state bird of Montana is Hawk

*/

18.3. Concepts 85

CSCI 132 Basic Data Structures

18.4 Lecture Code

/*
Programmer: James Goudy
Project: Array Lecture Code
ANT project

*/

import java.util.Arrays;

public class Array_Lecture {

public static void main(String[] args) {

//Variables

//declare an arrays
double[] Arrayl;
String[] DogName;
int[] Scores;
double[] [] Grid3by2;

//Variables
String ADogName;
String stryy;

//Variables for printing grid
int Colcntr = 0;
int ColStop = 2;

int Rowcntr = 0;
int RowStop = 3;

//Initalize the array
//This is where we set how many elements we need.
//Consider an element as a box to store the data

Arrayl = new double[5]; //We can store 5 doubles
DogName = new String[3]; //Here we can store 3 names
Scores = new int[4]; //Here we can store 4 scores

Grid3by2 = new double[3][2];

//Here is an example of how we can

//create and initialize an array 1in one step

String[] colors = {"Red", "Green", "Blue"};

String[][] names = {{"Mr. ", "Mrs. ", "Ms. "}, {"Smith", "Jones",

//How we enter values into an array

DogName [0] = "Fido";
DogName[1] = "Spot";
DogName[2] = "Barky";

//Assign an element to a variable:

"Rodes"}};

(continues on next page)

86

Chapter 18. Arrays

CSCI 132 Basic Data Structures

(continued from previous page)

ADogName = DogName[l]; // This assigns the value of Spot to ADogName

System.out.println("The second dog is " + ADogName);
//Print the name out by referencing the array element
System.out.println("The second dog is " + DogName[l]);

//Here is how we enter data into Grid3by2
//Here is the data in the grid formataion
// 10 | 15

// -— | --

// 20 | 25

// -— | -=

// 30 | 35
Grid3by2[0][0] = 10;
Grid3by2[0][1] = 15;
Grid3by2[1][0] = 20;
Grid3by2([1][1] = 25;
Grid3by2[2][0] = 30;
Grid3by2[2][1] = 35;
System.out.println("\n-———————————————— \n");

//Loop to control rows
while (Rowcntr < RowStop) {

//Loop to control columns

while (Colcntr < ColStop) |
System.out.print (Grid3by2 [Rowcntr] [Colcntr] + " "),
Colcntr++;

}

Colcntr = 0;

System.out.println();

Rowcntr++;

System.out.println("\n-———————————————- \n");

//using a for to loop through an array
for (String d : DogName) {
System.out.println(d);

//An example of using a for statement to print
// an array — note that in this example we are storing
//the array value in myValue and then printing it.

//
System.out.println("\n-———————————————— \n");
double myValue;

// Note how the counters row and col will always increment
// to the coordinates of current element

(continues on next page)

18.4. Lecture Code 87

CSCI 132 Basic Data Structures

(continued from previous page)

for (int row = 0; row < 3; rowt+) {
for (int col = 0; col < 2; col++) {
myValue = Grid3by2[row] [col];
System.out.print (myvValue + " ");
I3
System.out.println();
}
System.out.println("\n-————---———————— \n");

//Short hand version of using a for statement
for (double|[] dx Grid3by2) {
for (double dy dx) A
System.out.print (dy);
}
System.out.println();

SIS LSS S S S S S S
//Sort an Array
SIS LSS S S S

System.out.println("\n-———---—-———————~ \n");
int[] Numbersl = {5, 2, 4, 3, 0, 7, 1, 6};
for (int NumCntr = 0; NumCntr < Numbersl.length; NumCntr++)

")

System.out.print (Numbersl [NumCntr] + "

Arrays.sort (Numbersl) ;

System.out.print ("\n\n");
for (int NumCntr = 0; NumCntr < Numbersl.
System.out.print (Numbersl [NumCntr] + "

length; NumCntr++)

")

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS S
//Search an Array

SIS S S S S S S SSSSSSS S
System.out.println("\n-———————————————— \n");
String SearchItem;

int FoundItem;

String[] vehicles =
"segway",
"airplane",

SearchItem =

{"bicycle", "truck", "car",
"motor home", "skate board",
"boat", "canoe"};

"segway";

"aty" ,

Arrays.sort (vehicles);

//Binary Search searches for the item

//If found, it will return the index

//If not found, it will return a -1

//Note Arrays must be sorted first in order to
//return accurate results

{

{

(continues on next page)

88

Chapter 18. Arrays

CSCI 132 Basic Data Structures

(continued from previous page)

FoundItem = Arrays.binarySearch (vehicles, SearchItem);

if (FoundItem > -1) {

System.out.println ("Founditem is " + vehicles[FoundItem]);
} else {

System.out.println("Vehicle not found");

A A A A A A A s
//Fill an Array

A A N Ve
System.out.println("\n-———————————————- \n");

//Replaces all the values with the value 99
Arrays.fill (Numbersl, 99);

for (int NumCntr = 0; NumCntr < Numbersl.length; NumCntr++) A

System.out.print (Numbersl [NumCntr] + " ");

System.out.println ("\n\n");
//Fill the first three spots withthe number 42
Arrays.fill (Numbersl, 0, 3, 42);

for (int NumCntr = 0; NumCntr < Numbersl.length; NumCntr++) <
System.out .print (Numbersl [NumCntr] + " ");

System.out.println ("\n\n");

Arrays.fill (vehicles, "");
for (int NumCntr = 0; NumCntr < vehicles.length; NumCntr++) |
System.out.print (vehicles [NumCntr] + " ");
}
System.out.println("\n-———————————————— \n");
3
}
End Of Topic

18.4. Lecture Code 89

CSCI 132 Basic Data Structures

920 Chapter 18. Arrays

CHAPTER
NINETEEN

19.1 Key ldeas

e ArrayLists

19.2 Readings

https://docs.oracle.com/javase/8/docs/api/java/util/ ArrayList.html

https://www.geeksforgeeks.org/arraylist-in- java/

19.3 Concepts

ARRAYLISTS

Definition

ArrayList is a resizable one-dimensional array that can store any data type in any element.

Tip

The best practice is to make all the data the same type. This is done using the classifier.

// only accept data that is a double
ArrayList<Double> myArrayList = new ArrayList();

// only accept data that is an int
ArraylList<Integer> myArrayList = new ArrayList();

// only accept data that is a String
ArrayList<String> myArrayList = new ArrayList();

// accepts any type of data including mixed
ArrayList myArrayList = new ArraylList();

91

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://www.geeksforgeeks.org/arraylist-in-java/

CSCI 132 Basic Data Structures

19.4 Lecture Code

19.4.1 Observations:

* We create an ArrayList with the following syntax:

ArraylList<datatype> arraylistname = new ArrayList();

* .add(value) method is used to add a data to the ArrayList

* .remove(index) method will remove data by position

* .remove(value) method will remove data by value

¢ .clear() method will clear the ArrayList of all elements - “emptying it”

* We iterate/loop through the array using a for statement:

Va3
Project: ArrayLists
Programmer: James Goudy

*/

import java.util.ArrayList;
import java.util.Collections;

public class Arraylist_Lecture {

public static void main (String[] args) {
// Variables
String stryy;

SIS LSS S S S S S SSSSSSSSSSSS
//

// Array List

//

SIS LSS S S S S S S S SSS

// create the Array List

// Note: <String> is telling the arraylist to only
// accept data that is a String

ArrayList<String> cars = new ArrayList();

// use the add method to add data
cars.add ("Ford");

cars.add ("Chevy");
cars.add("Scion");

cars.add ("Honda") ;

//Retrieve one item - use the .get (x) where x is an int index location
System.out.println(cars.get (3));

//print out all items
for (int CarCntr = 0; CarCntr < cars.size(); CarCntr++) {
System.out.println("This is " + cars.get (CarCntr));

(continues on next page)

92 Chapter 19. ArrayLists

CSCI 132 Basic Data Structures

(continued from previous page)

System.out.println ("\n-————-—-- Print With ForEach —-—————————— "y ;

// print items using forEach
cars.forEach((n)->{System.out.println(n);});

System.out.println("\n-———————————————— "y

SIS S S S S S S SSSSSSSSSSSSS
// Sort an Arraylist
SIS LSS S S S

// To sort an Arraylist, you must do it through the collections
// library. Add imports java.util.collections

Collections.sort (cars);

// print out all items

System.out.println("\n\nCars sorted list ");

for (int CarCntr = 0; CarCntr < cars.size(); CarCntr++) {
System.out.println("This is " + cars.get (CarCntr));

System.out.println("\n-———————————————— \n");
// Remove Scion by referencing the index
cars.remove (3) ;

for (int CarCntr = 0; CarCntr < cars.size(); CarCntr++) {
System.out.println("This is " + cars.get (CarCntr));

}

System.out.println("\n-———————————————— \n");

// Remove Chevy by using the actual data
stryy = "Chevy";
cars.remove (stryy);

for (int CarCntr = 0; CarCntr < cars.size(); CarCntr++) {
System.out.println("This is " + cars.get (CarCntr));

}

System.out.println("\n-———————————————— \n");

// insert an item — here we are inserting Dodge at the beginning of the list
cars.add (0, "Dodge");

for (int CarCntr = 0; CarCntr < cars.size(); CarCntr++) {
System.out.println("This is " + cars.get (CarCntr));

// To empty or clear the arraylist

cars.clear();

System.out.println ("The number of elements is cars is " +
cars.size());

(continues on next page)

19.4. Lecture Code 93

CSCI 132 Basic Data Structures

(continued from previous page)

End Of Topic

94 Chapter 19. ArrayLists

CHAPTER
TWENTY

OVERLOADING

Definition

Overloading Overloading a function is to use the same function name, but give it different parameters.

20.1 Lecture Code

Note in the lecture code below how functl() has different parameters passed to it. It first has String data passed to it, then

double data, followed by int data, and then both String and int data. Same function name with different data types.

Overloading a function is used mostly in creating JAVA constructors when building classes.

public class Overload_demo {

//funcl with no parameters

static void funcl () {
System.out.println("This is function 1 with no arguments");
return;

}

//funcl with a string parameter

static void funcl (String mydata) {
System.out.println("This is function 1 with a string");
return;

}

//funcl with a double parameter

static void funcl (double mydata) {
System.out.println("This is function 1 with a double");
return;

}

//funcl with an int parameter

static void funcl (int mydata) {
System.out.println("This is function 1 with a double");
return;

}

//funcl with a string and int parameter

//note that this one also returns a string

//where the other one did not.

static String funcl (String mystring, int mydata) {
String Ans = "";
Ans = ("This is function 1 with a string and an int");

(continues on next page)

95

CSCI 132 Basic Data Structures

(continued from previous page)

return Ans;
}
//add2 - add two doubles
static double add2 (double numl, double num2)
{
return (numl + num2);
}
//add2 - concatenate two strings
static String add2 (String textl, String text2)
{

return (textl + " " + text2 + " - is great!");

public static void main (String[] args) |
//funcl examples
funcl () ;
funcl ("Bubba") ;
funcl (22.5);
funcl (999);
System.out.println (funcl ("Bob", 59));

//add2 examples
System.out.println(add2 (100.00,6000.00));
System.out.println(add2 ("hot", "dog"));

End Of Topic

96

Chapter 20. Overloading

CHAPTER
TWENTYONE

CLASSES AND OBJECTS

21.1 Key ldeas

¢ Classes
¢ Objects
¢ Constructors

¢ Methods

21.2 Readings

https://books.trinket.io/think java2/chapter11.html

https://www.geeksforgeeks.org/classes-objects- java/

21.3 Concepts

21.3.1 Class Definition

Definition

Class is a blueprint or template that is used to create objects. That template is considered to be a “data type” and can
include functions/methods.

21.3.2 Attributes

Definition

Attributes This is the data that describes our class.

For example, if we wanted to create a class to make dogs, we might describe a dog by having a breed, a name, and a color.
The attributes would be breed, name, and color.

97

https://books.trinket.io/thinkjava2/chapter11.html
https://www.geeksforgeeks.org/classes-objects-java/

CSCI 132 Basic Data Structures

21.3.3 Constructors

Definition

Constructor A constructor is a function(s) that allows us to set initial values to our attributes. It can be overloaded
pending the values we need to set at the time of creating the object. Note that the constructor matches the name of the
class and has no return value.

class Dog{
// Define the attributes of a dog

String breed;
String name;
String Color;

// NOTE: we can have as many constructors as we need.

// If one is not defined,

// the a "default" constructor is generated behind the scenes.
// It is always good form to include constructors

// 1f no constructor 1is defined, then this one 1is the default
public Dog ()

{

3

// constructor if we know the breed and name at the time of creation
// optional
public Dog(String breed, String name)
{
this.breed = breed;
this.name = name;

// constructor 1f we know the breed, name, color at the time of creation
// optional
public Dog(String breed, String name, String Color)
{
this.breed = breed;
this.name = name;
this.Color = Color;

98 Chapter 21. Classes and Objects

CSCI 132 Basic Data Structures

21.4 Setters and Getters

Definition

Setters and Getters - Setfers are methods that allow a programmer to set the value of an attribute of an object. Setters
allow the programmer to check a value before changing its value. Getfers are methods that allow a programmer to retrieve
the value of an attribute of an object.

class Dog{

// Define the attributes of a dog

// 77777777 AAAAAAAX

// Values can initially be set by the constructor
// and changed via the Set function

String breed;
String name;
String color;

// NOTE: we can have as many constructors as we need.

// If one 1is not defined,

// the a "default" constructor is generated behind the scenes.
// It is always good form to include constructors

// 1if no constructor 1is defined, then this one is the default
public Dog ()

{

}

// constructor if we know the breed and name at the time of creation
// optional
public Dog(String breed, String name)
{
this.breed = breed;
this.name = name;

// constructor if we know the breed, name, color at the time of creation
// optional
public Dog(String breed, String name, String Color)

{
this.breed = breed;
this.name = name;
this.color = color;
}
/) s

// Setters and Getters

public String getBreed()
{

return breed;

(continues on next page)

21.4. Setters and Getters 99

CSCI 132 Basic Data Structures

(continued from previous page)

public void setBreed (String breed)

{
this.breed = breed;

public String getName ()
{

return name;

public void setName (String name)

{

this.name = name;

public String getColor ()
{

return Color;

public void setColor (String Color)

{
this.Color = Color;

21.5 Methods

Defintion

Method This is a public function that can be accessed by the object. It allows the object to excecute code pertanent to
the object.

In our dog example, if we want to make the dog bark we could write a method to do so.

class Dog{

// Define the attributes of a dog

// ,,,,,,,, dAAAAAAAA

// Values can initially be set by the constructor
// and changed via the Set function

String breed;
String name;
String color;

// NOTE: we can have as many constructors as we need.
// If one 1is not defined,

(continues on next page)

100

Chapter 21. Classes and Objects

CSCI 132 Basic Data Structures

(continued from previous page)

// the a "default" constructor is generated behind the scenes.
// It is always good form to include constructors

// 1f no constructor 1s defined, then this one 1s the default
public Dog ()

{

}

// constructor if we know the breed and name at the time of creation
// optional
public Dog(String breed, String name)
{
this.breed = breed;
this.name = name;

// constructor if we know the breed, name, color at the time of creation
// optional
public Dog(String breed, String name, String Color)

{
this.breed = breed;
this.name = name;
this.color = color;
3
/) e

// Setters and Getters

public String getBreed()
{

return breed;

public void setBreed(String breed)
{
this.breed = breed;

public String getName ()
{

return name;

public void setName (String name)

{

this.name = name;

public String getColor ()
{

return Color;

public void setColor (String Color)
{

this.Color = Color;

(continues on next page)

21.5. Methods 101

CSCI 132 Basic Data Structures

(continued from previous page)

/) —mmmm Methods———————————————————
public void Bark()
{

System.out.println ("Woof Woof");

21.6 Dog Completed Code

* Programmer: James Goudy
* Project: Dog Example

* Show how we can make multiple dogs using classes
* Name the project: DogExample
*/

// Create a blueprint of a dog

// The characteristics (attributes) of a dog is:
// Breed, Name, Color

class Dog{

// Define the attributes of a dog
String breed;

String name;

String color;

// Constructor

// A constructor 1is a function(s)allows us to set initial values
// to our attributes. It can be overloaded pending the values

// we need to set at the time of creating the object. Note that
// the constructor matches the name of the class and has no

// return value.

// NOTE: can have as many constructors as we need. If one is not defined,
// the a "default" constructor is generated behind the scenes.
// It is always good form to include constructors when you write a class.

// 1f no constructor is defined, then this one is the default
public Dog ()

{

3

// constructor if we know the breed and name at the time of creation
public Dog(String breed, String name)
{

this.breed = breed;

this.name = name;

(continues on next page)

102 Chapter 21. Classes and Objects

CSCI 132 Basic Data Structures

(continued from previous page)

// constructor if we know the breed, name, color at the time of creation
public Dog(String breed, String name, String color)
{

this.breed = breed;

this.name = name;

this.color = color;

// Setters and Getters

public String getBreed()
{

return breed;

public void setBreed(String breed)
{
this.breed = breed;

public String getName ()
{

return name;

public void setName (String name)

{

this.name = name;

public String getcolor()
{

return color;

public void setcolor (String color)

{

this.color = color;

public void Bark()

{
System.out .println ("Woof Woof");

public String allInfo()

{
String info = "";
info this.breed + " " + this.name + " " + this.color;
return info;

(continues on next page)

21.6. Dog Completed Code 103

CSCI 132 Basic Data Structures

(continued from previous page)

public class DogExample {
public static void main(String[] args) {

// Create a dog
Dog myDogl = new Dog () ;

myDogl.setBreed("Collie");
myDogl.setName ("Fido");
myDogl.setcolor ("Brown") ;

//Use getters to output information
System.out.println (myDogl.getBreed() + " "
+ myDogl.getName () + " "
+ myDogl.getcolor());

// use a method to output information
System.out .println(myDogl.allInfo());

// make the dog bark
myDogl.Bark () ;

// creat another dog

// note this time, the breed, name, and color are known

// at the time of creation
Dog myDog2 = new Dog ("Shepard", "Spot", "White");

//Use getters to output information
System.out .println (myDog2.getBreed() + " "
+ myDog2.getName () + " "
+ myDog2.getcolor());

// use a method to output information
System.out.println (myDog2.allInfo());

// make the dog bark
myDog2.Bark () ;

21.7 In-class Exercise Suggestion

¢ Make cars

End Of Topic

104

Chapter 21. Classes and Objects

CHAPTER
TWENTYTWO

CLASSES - INHERITANCE

22.1 Key ldeas

e Inheritance

* Multiple Classes

22.2 Readings

https://books.trinket.io/think java2/chapter14.html
https://www.geeksforgeeks.org/inheritance-in-java/

https://www.mygreatlearning.com/blog/polymorphism-in-java/

105

https://books.trinket.io/thinkjava2/chapter14.html
https://www.geeksforgeeks.org/inheritance-in-java/
https://www.mygreatlearning.com/blog/polymorphism-in-java/

CSCI 132 Basic Data Structures

106 Chapter 22. Classes - Inheritance

CHAPTER
TWENTYTHREE

CONCEPTS

Definition

Inheritance It is the ability in JAVA where one class is allowed to inherit the fields and methods of another class. It
allows the programmer to build upon existing classes

Definition

Encapsulation In object-oriented computer programming (OOP) languages, the notion of encapsulation (or OOP En-
capsulation) refers to the bundling of data, along with the methods that operate on that data, into a single unit. Many
programming languages use encapsulation frequently in the form of classes. By Sumo Logic

Definition

Polymorphism is the ability of an object to take on many forms. The most common use of polymorphism in OOP occurs
when a parent class reference is used to refer to a child class object.

See Reference Reading

23.1 Lecture Code

import java.util.ArrayList;
import java.util.Scanner;

Vs
* Programmer: James Goudy
* Project: PersonWorker Voter Class Lecture

*/

Vi
A class is like a blueprint. It allows programes to
create an "object" based on a class. It follows the following
naming schema.

In main or a class other than itself.

(continues on next page)

107

https://www.sumologic.com/glossary/encapsulation/#:~:text=What%20does%20encapsulation%20mean%3A%20In,in%20the%20form%20of%20classes.

CSCI 132 Basic Data Structures

(continued from previous page)

classname yourObjectname = new classname();

example in main or other class other than PersonWorker
PersonWorker myPerson = new PersonWorker();

Classes usually start with a Capital Letter.

*/

class Person {

Va3

These are private members -

these variables can only be used

by the functions within the class.
*/

private String xFname;

private String xLname;

private String xCity;

private String xState;

Va3

Constructor

This 1is used by the class in order to create a class.

The constructor can also used to set defaults default values.

All constructors are public and they match the name of the function.
*/
public Person () {
//This is the default construct.

//If the name of the of the person is known when we create the class
//a constructor can be written to set it at the time of creation.
public Person(String firstName, String lastName) {

xFname = firstName;

xLname = lastName;

//Note we can have as many constructors as we need, just as long
//as we change the parameters of the function.
public Person(String firstName, String lastName, String City, String State) {
xFname = firstName;
xLname = lastName;
xCity = City;
xState = State;

J*
These are getters and setters.
Setters allow other programs to set the values of the class object.
Getters allow other programs to retrieve the values of the class object.
*/
public String getFirstName () {

(continues on next page)

108 Chapter 23. Concepts

CSCI 132 Basic Data Structures

(continued from previous page)

return xFname;

public void setFirstName (String FirstName) {
xFname = FirstName;

public String getLastName () {
return xLname;

public void setLastName (String LastName) {
xLname = LastName;

public String getCity () {
return xCity;

public void setCity(String City) {
xCity = City;

public String getState() {
return xState;

public void setState(String State) {
xState = State;

) e We can include methods in our functions—-—-—-——————-—
/* Methods members can be of three types.

1. public - can be used anywhere. Visible to all classes.

2. private - used only within the class.

Visible only within the class.
3. protected - used only within the package.
Visible only within package.
*/
//Here is a method for concatenating the first and last name;
public String getFullName () {
String xFullName;
xFullName = xFname + " " + xLname;
return xFullName;

//Here 1s a method to calculate the value of income
public double IncomeCalculateor (double NumberOfYears, double YearlySalary) {
double ans = 0;
try {
ans = NumberOfYears * YearlySalary;
} catch (Exception e) {
System.out.println ("\n\n****"
+ "You had a error, please try again"
+ "\n****\n");

(continues on next page)

23.1. Lecture Code 109

CSCI 132 Basic Data Structures

(continued from previous page)

return ans;

//Here is a method for printing a mailing label
public void MailingAddress ()
{

System.out.println(xFname + " " + xLname + "\n"
+ xCity + ", " + xState);

// Example of inheritance
class Worker extends Person {

//private members
private String xCompany;
private String xJobTitle;

private double xSalary;

//constructors
//default constructor
public Worker () {

public Worker (String FirstName, String LastName,
String Company, String Title) |

//notice that we use this to call the function
//of the inherited class PersonWorker
this.setFirstName (FirstName) ;

this.setlLastName (LastName) ;

//set company name and title
xCompany = Company;
xJobTitle = Title;

//setters and getters
public void setCompanyName (String CompanyName) {
xCompany = CompanyName;

public String getCompanyName () {
return xCompany;

public void setSalary(double Salary) {
xSalary = Salary;

(continues on next page)

110

Chapter 23. Concepts

CSCI 132 Basic Data Structures

(continued from previous page)

public double getSalary() {
return xSalary;

public class PersonWorker {

public static void main (String[] args) {
// TODO code application logic here
String fulll, full2 = "";
Scanner sc = new Scanner (System.in);
double ans = 0;

//Create A person

Person pl = new Person();

//Add values to the person
pl.setFirstName ("Jim");

pl.setLastName ("Smith");

ans = pl.IncomeCalculateor (5, 1000000.0);

//Create a second person

Person p2 = new Person();
p2.setFirstName ("Axle");

p2.setLastName ("Rod") ;

fulll = pl.getFullName() + " " + ans;
full2 = p2.getFullName () ;
System.out.println (fulll + "\n" + full2);

//Storing Objects in an arraylist
ArrayList<Person> myAl = new ArrayList();

/* Notice how <Person> Here we are casting the
arraylist to only take the datatype Person. This
can also be done with every other data type. For example-—
Arraylist<double> myAl = new ArrayList(); //only accept doubles
Arraylist<String> myAl = new ArrayList(); //only accept Strings

Arraylist<int> myAl = new ArrayList(); //only accept ints
*/
for (int cnt = 0; cnt < 4; cnt++) {
Person xx = new Person(); //create a new person
XX.setFirstName ("Bob" + cnt); //concantenate the counter

//to the name so all the
//Bobs will be unique

xx.setLastName ("Smith" + cnt); //concantenate the counter
//to the name so all the
//Smiths will be unique

(continues on next page)

23.1. Lecture Code 111

CSCI 132 Basic Data Structures

(continued from previous page)

myAl.add (xx) ; //Add person xx to arraylist
}
for (int cntrx = 0; cntrx < myAl.size(); cntrx++) {
System.out.println(myAl.get (cntrx).getFullName());
}

Worker wl = new Worker();

wl.setFirstName ("Bubbba") ;

wl.setLastName ("Smith") ;

wl.setCompanyName ("Police Academy");
wl.setSalary (65000);

fulll = wl.getFullName() + " " + wl.getSalary();
System.out .println (fulll);

//</editor-fold>

//create a worker using a constructor
Worker w2 = new Worker ("Jim", "Rodes", "Mickey's Brews", "Brewer");
System.out.println ("\n\n" + w2.getFullName () + "\n\n");

//Create an array of workers
Worker[] workers = new Worker|[3];

//Data for one worker in the array

workers[0] = new Worker();

workers[0] .setFirstName ("Billy");

workers[0] .setLastName ("TheKid") ;
System.out.println("Name = " + workers[0].getFullName());

//Input workers in to the array by

//asking the user for information

//Note this can be done the same way for an arraylist

for (int cnt = 0; cnt < workers.length; cnt++) {
workers[cnt] = new Worker ();
System.out.println("Enter First Name");
workers[cnt] .setFirstName (sc.nextLine () .toString());

System.out.println("Enter Last Name");
workers[cnt].setLastName (sc.nextLine());

System.out.println ("Enter Company Name");
workers[cnt] .setCompanyName (sc.nextLine());

try {
System.out.println("Enter Salary");
workers|[cnt] .setSalary (sc.nextDouble());
sc.nextLine () ;
} catch (Exception e) {
System.out.println("Error with salary - data not entered");

(continues on next page)

112 Chapter 23. Concepts

CSCI 132 Basic Data Structures

(continued from previous page)

sc.nextLine () ;

//Print out the contents of the array
for (int cnt = 0; cnt < workers.length; cnt++)
fulll = workers[cnt].getFullName() + " "
+ workers|[cnt].getSalary () + " "
+ workers[cnt].getCompanyName () ;

System.out.println (fulll + "\n");

{

End Of Topic

23.1. Lecture Code

113

CSCI 132 Basic Data Structures

114 Chapter 23. Concepts

CHAPTER
TWENTYFOUR

ABSTRACT CLASSES

24.1 Key ldeas

¢ Abstract Classes

24.2 Readings

Abstract Classes by JournalDev

Using an Interface vs. Abstract Class in Java by Baeldung

Definition

Abstract Class - this is a class that is designated by the abstract keyword. This is a class that can only be used when it is
inherited. The abstract class is mostly used to provide a base for subclasses.

24.3 Lecture Code

J*
* Project: Abstract Classes Lecture Code

* Programmer: James Goudy
*

*/

// abstract class cannot be instantiated
// it must be inherited
abstract class Person {

// Note that the properties are public

// meaning they do not need a setter or getter and
// can be accessed directly.

public String firstName;

public String lastName;

// constructor
public Person(String firstName, String lastName) {
this.firstName = firstName;

(continues on next page)

115

https://www.journaldev.com/1582/abstract-class-in-java#:~:text=Java%20Abstract%20class%20can%20implement,or%20to%20provide%20default%20implementation.
https://www.baeldung.com/java-interface-vs-abstract-class

CSCI 132 Basic Data Structures

(continued from previous page)

this.lastName = lastName;

class Worker extends Person {

// Note that the properties are public

// meaning they do not need a setter or getter and
// can be accessed directly.

public String jobTitle;

public String company;

// constructor
public Worker (String jobTitle, String company,
String firstName, String lastName) {
super (firstName, lastName);
this.jobTitle = jobTitle;
this.company = company;

// super is telling the class to include the constructor
// parent class - thus we can initalize firstName and lastName
// in the constructor of the child class.

public String allInfo()
{

return (firstName +" " + lastName +" " + jobTitle +" " +company);

public class Jl_Abstract_Classes {

public static void main (String[] args) |
System.out.println("\n\"Person myPerson = "
+ "new Person (\"John\",\"Doe\");\"");
System.out.println("Will not compile since it is an "
+ "abstract class\n");

// Person myPerson = new Person ("John","Doe");
// This will not compile since it is an abstract class

// Worker will compile since it inherits Person
Worker myWorker = new Worker ("Programmer","XYZ Company","Joe", "Doe");

System.out.println(myWorker.allInfo());

System.out.println ("\n\nbye\n");

End Of Topic

116 Chapter 24. Abstract Classes

CHAPTER
TWENTYFIVE

LAMBDA FUNCTIONS

25.1 Key ldeas

¢ Lambda functions

25.2 Readings

Lambda Expressions

Lambda Expression in Java 8

Definition

Lambda functions are intended as a shorthand for defining functions that can come in handy to write concise code
without wasting multiple lines defining a function. They are also known as anonymous functions, since they do not have
a name unless assigned one. From What'’s in a Lambda?

Definition

Interface - In its most common form, an interface is a group of related methods with empty bodies. The programmer is
then responsible for writing the functions

Note

In most other languages, lambda functions do not need an interface and can be written as just as an anonmyous function.
They all follow the same structure:

O->{}

117

https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://www.geeksforgeeks.org/lambda-expressions-java-8/
https://towardsdatascience.com/whats-in-a-lambda-c8cdc67ff107

CSCI 132 Basic Data Structures

25.3 Lecture Code

/*

* Program: Lambda Examples
* Programmer: James Goudy

*/

// note that the interface can also be put in their own file

// note that a function is defined (which the programmer can name)
// in the interface. The actual functin can then be written as
// a global function or within a function.

interface InchtesToFeet(
// Input is a double - inches
// Output is a double executed by the function name "calculate"
double calculate (double inches);

interface FtoC{
// Input is a double — farh
// Output is a double executed by the function name "calculate"
double calculate (double farh);

interface GalaxayTip({
// Input is nothing
// Output is a string executed by the function name "calculate"
String run();

interface myFormula({
// Input is two doubles
// Output 1s a string executed by the function name "tabulate"
String tabulate (double numl,double num?2);

public class Lambda_Lecture {

//Global Lamda functions
static InchtesToFeet itf =(i)->{return i/12.0;};
static GalaxayTip tip = ()->{return "Always bring a towel";};

// multiple 2 numbers, add 50 then concantenate string
// note this lambda function has multiple lines of code

static myFormula mf = (nl,n2) —>{

// define local variable
double ans = 0;

ans = nl* n2 + 50;

(continues on next page)

118 Chapter 25. Lambda Functions

CSCI 132 Basic Data Structures

(continued from previous page)

return ans+ " units";

bi

public static void main(String[] args) {

int i = 36;
double ft = 212;

double xx = 10;
double yy = 20;

System.out.println(itf.calculate(i) + " feet");

FtoC ftc = (f) -> {return (f-32.0) * 5.0/9.0;};
System.out .println(ftc.calculate(ft) + " C");
System.out.println(ftc.calculate(392.0) + " C");

System.out .println(tip.run());

System.out.println(mf.tabulate (xx, yy));

J*
3.0 feet
100.0 C
200.0 C
Always bring a towel
250.0 units

*/

End of Topic

25.3. Lecture Code 119

CSCI 132 Basic Data Structures

120 Chapter 25. Lambda Functions

CHAPTER
TWENTYSIX

RECURSION

26.1 Key Topics

¢ Recursion

¢ Tail Recursion

26.2 Readings

» Recursion - Geeks For Geeks
* Recursion - Wikipedia
e Tail vs Non-Tail Recursion by Baeldung

* Recursive by Computer Hope

121

https://www.geeksforgeeks.org/recursion/?ref=gcse
https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://www.baeldung.com/cs/tail-vs-non-tail-recursion
https://www.computerhope.com/jargon/r/recursive.htm

CSCI 132 Basic Data Structures

122 Chapter 26. Recursion

CHAPTER
TWENTYSEVEN

VIDEOS

https://youtu.be/ngCos392W4w

Definition

Recursion A function that calls itself.

Definition

Tail Recursion A tail recursion is also a kind of recursion but it will make the return value of the recursion call as the
last statement of the method.

Warning: Java does not optimize for tail recursion

Tip: In order to trap a stack over flow error, it has to be specified in the catch statment as shown below:

try {
// posible code that could stack overflow
} catch (StackOverflowError e) {

System.out .println ("RECURSION: STACK OVERFLOW ERROR") ;
System.out.println(e.getMessage());

27.1 Lecture Code

Any recursive function can always be written as a loop. Note there is an example of what a tail-recursive function would
look like if Java supported it. Many languages do not support tail-recursion. Scala, Haskell, and some others do support
it. This is important to know because sometimes this is asked in interview questions.

/*

*

* Project: Recursion Lecture Code

(continues on next page)

123

https://youtu.be/ngCos392W4w
https://www.pixelstech.net/article/1474689232-Traditional-recursion-vs-Tail-recursion

CSCI 132 Basic Data Structures

(continued from previous page)

* Programmer: James Goudy
*

*/
public class Ds_recursion {
static double sumNums_Loop (int n) {
double sum = 0;
for (int i = n; i > 0; i-—-) A
sum = sum + 1i;

return sum;

// This will eventually cause a stack overflow error for big "n"'s.
// Every time the function is called recursively and

// intermediate n is saved in the program stack which

// will result in running out of resources / stackoverflow error

static double sumNums_Recursive (int n) {
if (n == 0) {

return n;

return n + sumNums_Recursive(n - 1);

// TAIL Recursion

// NOTE: Java as of JDK 17 does not optimization for tail recursion

// If it did, it would look like the following:

// The reason this is a tail recursion is the sum

// 1s being calculated everytime and the function

// does not have to store any temp values to retreive the calculated answer

static double sumNums_TailRecursive (int n, double sum) {
if (n <= 1) {

return sum;

return sumNums_TailRecursive(n - 1, sum + 1);

public static void main(String[] args) {

int n = Integer.MAX VALUE;
double ans = 0;

n = 200;

(continues on next page)

124 Chapter 27. Videos

CSCI 132 Basic Data Structures

(continued from previous page)

System.out.println("Max integer: " + Integer.MAX_ VALUE);
System.out.println("n = " + n + "\n");
System.out.println("Loop: Sum of all numbers " + n
+ " =" + sumNums_Loop (n));
System.out.println("Recursive: Sum of all numbers " + n
+ " = " + sumNums_Recursive (n));

System.out.println ("\n **FFrxisaiitxi\nt)

// set a very big "n"
n = 200000000;

System.out.println("n = " + n + "\n");
System.out.println("Loop: Sum of all numbers " + n
+ " =" + sumNums_Loop (n));

// The following will fail recursively.

// This will error because it will run out of resources

// on the program stack.

// Note how we are catching specifically for a StackOverFlow error.

try {
System.out.println("Recursive: Sum of all numbers " + n
+ " = " + sumNums_Recursive (n));
} catch (StackOverflowError e) {

System.out.println ("RECURSION: STACK OVERFLOW ERROR") ;
System.out .println(e.getMessage());

System.out.println ("\nbye\n");

¥

Va3

Max integer: 2147483647
n = 200

Loop: Sum of all numbers 200 = 20100.0
Recursive: Sum of all numbers 200 = 20100.0

Ok ko kA ok k A Ak A
n = 200000000
Loop: Sum of all numbers 200000000 = 2.0000000174137712E16
RECURSION: STACK OVERFLOW ERROR

null

bye
*/

27.1. Lecture Code 125

CSCI 132 Basic Data Structures

27.2 Lecture Code ll

Note that in this example a recursive function as another recursive function called within it. Note that it will print the
output of the first recursive function first all at once. Then it goes back for each time and prints the outcome separately

starting with the last iteration of the “top” recursive function.

/*
* Programmer: James Goudy
* Project: Lecture Code Recursion II

*/

/**

*
* @author jgoudy
*/

public class DS_Recursion_Example_II {

static String alp = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghicklmnopgrstuvwxyz";

static int stop = 4;

static void recursiveletter (int a) {
if (a > stop) {
return;

System.out.println("a = " + alp.charAt (a)

at+;
recursivelLetter (a);

static void recursiveCount (int n) {
if (n > stop) {

return;
System.out.println("n = " + n);
n++;
recursiveCount (n) ;

System.out.println("-—————————- "y
recursiveletter (n);

public static void main(String[] args) {

System.out.println("L = " + alp.length());

System.out.println("");

recursiveCount (0);

+n_n+a),.

System.out.println ("\n****** Call recursive letters only ******xx¥ki\n"),;

(continues on next page)

126

Chapter 27. Videos

CSCI 132 Basic Data Structures

(continued from previous page)

recursivelLetter (0);

}

/%
Output
L = 52
n =20
n =1
n =2
n =3
n =4
a=E -4
a=D -3
a=E - 4
a =0¢C -
a=D -3
a=E - 4
a B - 1
a=0¢6-2
a=D -3
a=E -4

*

rkx Cgq]] recursive letters only *****xxk

a=A4-20
a=B -1
a ==¢ 2
a=D - 3
a=E -4
*/

End Of Topic

27.2. Lecture Code Il 127

CSCI 132 Basic Data Structures

128 Chapter 27. Videos

CHAPTER
TWENTYEIGHT

REGEX - USING JAVA MATCHES

Definition

A regular expression (shortened as regex or regexp; sometimes referred to as rational expression) is a sequence of
characters that specifies a search pattern in text. Usually such patterns are used by string-searching algorithms for “find”
or “find and replace” operations on strings, or for input validation. https://en. wikipedia.org/wiki/Regular_expression

28.1 From Stack Overflow

https://stackoverflow.com/questions/8923398/regex-doesnt-work-in-string-matches

Welcome to Java’s misnamed .matches () method... It tries and matches ALL the input. Unfortunately, other lan-
guages have followed suit :(

If you want to see if the regex matches an input text, use a Pattern, a Matcher and the . £ind () method of the
matcher:

Pattern p = Pattern.compile("[a-z]");
Matcher m = p.matcher (inputstring);
if (m.find())

// match

If what you want is indeed to see if an input only has lowercase letters, you can use .matches (), but you need to match
one or more characters: append a + to your character class, asin [a-z]+. Oruse " [a-z]+$and . find ().

28.2 Lecture Code

/*
* Programmer: James Goudy
* Project: Using Regex to determine valid characters in a string
*/

package com.mycompany.java_regexexpressions;

import java.util.regex.Matcher;
import java.util.regex.Pattern;

(continues on next page)

129

https://en.wikipedia.org/wiki/Regular_expression
https://stackoverflow.com/questions/8923398/regex-doesnt-work-in-string-matches
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#matches-java.lang.String-

CSCI 132 Basic Data Structures

(continued from previous page)

/**
*
* @author jgoudy
*/

public class Java_RegExExpressions {

public static void main(String[] args) {
boolean status = true;

// Test - only want a string expression to only allow
// the any capital letters of A B C D,

// the any lowercase letters of 1 m n o p,

// and any numbers of 4 5 6 7 8

// The regex Expression looks like this "[A-D1-p4-8]+S$S

// Note in order to work correctly in JAVA
// it must start with the * and end with the $

String regex_Expression = ""[A-Dl1-p4-8]+S";
System.out.println("Regex Expression = " + regex_Expression);

// this string should test false since FF is not allowed
String testPattern = "AAFFImno78";
System.out.println("\nFalse test pattern: " + testPattern);

Pattern p = Pattern.compile (regex_Expression);
Matcher m = p.matcher (testPattern);

status = m.find();

System.out.println("status = " + status);

// this pattern should test true
testPattern = "BBDDoooml55447";
System.out.println("\nTrue test pattern: " + testPattern);

p = Pattern.compile (regex_Expression);
m = p.matcher (testPattern);
status = m.find();

System.out.println("status = " + status);

// note that m.find() 1is a boolean and could be used
// in if statements, loops, etc.

/* Output
Regex Expression = ~[A-D1-p4-8]+$

False test pattern: AAFFImno78
status = false

True test pattern: BBDDoooml55447
status = true

*/

130 Chapter 28. Regex - Using Java Matches

CSCI 132 Basic Data Structures

28.3 Regular Expression References

Regular Expressions - Java
Regular Expressions - Microsoft
Regular Expression - Google / Python

Regular Expressions - Mozilla

Endo Of Topic

28.3. Regular Expression References

131

https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-reference
https://developers.google.com/edu/python/regular-expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions

CSCI 132 Basic Data Structures

132 Chapter 28. Regex - Using Java Matches

CHAPTER
TWENTYNINE

REFERENCE READING

29.1 Additional supplemental topics.

Articles you find helpful
Unable To Run .JAR Files in Windows 10/ 11 ? Here’s the Solution

29.2 Building Large Java Applications

Author: Ray Toal

Real Java applications are made up of hundreds, or thousands, of classes. Designing and building an application of this
size isn’t at all like building something tiny.

CONTENTS

Java Applications * Organizing Your Development Environment ¢ Basics of Class Loading * Building Your Application

29.2.1 Java Applications

A Java application is made up of classes and resources. Resources can be videos, songs, images, text files, data files, etc.
There can be thousands of classes and thousands of resource files in one application. Often you will write only some of
the classes yourself, and simply use many classes written by others.

There are three main types of Java applications:
* Native applications, which are stored on, and run directly on, the user’s desktop, laptop, or mobile device.
* Web applications, served by, and run mostly on, a web server.
» WebStart applications, which are stored on a server, but downloaded and run on demand.

Generally, all of the classes and resources are zipped up into a single file. For client apps and webstart apps, this is a
JAR file; for webapps this is a WAR file. Both jars and wars use the popular zip format (nice and portable). Note: with
webstart apps, you actually need two files, since the JNLP file has to live outside the war.

133

https://thegeekpage.com/unable-to-run-jar-files-in-windows-10-heres-the-solution/
https://cs.lmu.edu/~ray/notes/largejavaapps/

CSCI 132 Basic Data Structures

29.2.2 Organizing Your Development Environment

When dealing with large programs it is important that you keep your workspace organized. The following directory layout

has become standard; you should follow it:
((Project root) >

GO Ceo)

main test

(java) C resources) l: java] (resources }

Why is this so great?

¢ Everything under target is “derived” and therefore does not go into revision control. For example you put your Java
source code files under src/main/java. When these are compiled, the Java compiler places the resulting class files
under target.

 Everything under src/main goes in your distributed application (you don’t bundle your tests in your app).

Since you may have hundreds of Java source files, you need to group them into packages. Make sure the initial part of the
package name follows the convention of using your “reversed” Internet domain (such as edu.lmu.cs. The folder structure
of your application must mirror the package names! Here is an example to explain:

Suppose we are writing a calculator web application. We would need Java classes for controllers, validators, and services,
and perhaps some tests. Our project structure should be:

134 Chapter 29. Reference Reading

CSCI 132 Basic Data Structures

src

[main |
Java l (resources) a

A

+)
(resources)

C

[=1

u

«
(s

l: controller) t service :l (controller] (service)

WelcomeControllerjava CalcService jJava CalcValidatorTest java CalcServiceTest java
CalcController java

CalcCommand java

CalcValidator java

) OLALGLE
e
alalalnla
Upepepe

Of course a larger application might have many subpackages within an application, perhaps one per each functional
subsystem of the project. And within each subsystem, we may need more than just controller and service; we might
want separate packages for validators, domain classes, types, utility classes, factories, daos, property editors, etc.

Now if we were building a client application, we would probably place imeages, scripts, movies and so on into the re-
sources folder, but the convention is to structure these things under src/main/webapp as shown below. The resources
folder does keep properties files and other run-time configuration files (e.g., Hibernate mapping files). To make the
example interesting, we’ll assume that we are building our application using the Spring Framework.

29.2. Building Large Java Applications 135

CSCI 132 Basic Data Structures

{ main :l
java (webapp) (resources)

calc.properties

(see diagram applicationContext.xml
above) (database mapping files
... e.q., for Hibernate

or IBATIS
C WEB-INF) (_ assets)
web. xml

spring-serviet.xmi
(tid files)
(the "pages")

(images) { videos) l: scripts) l: styles)

Now let’s see how Java applications are built and run. (In doing so, we’ll see why the folder structure needs to match the
package name structure.

29.2.3 Basics of Class Loading

So all Java applications are made up of a bunch of classes, grouped into packages. But when an application is being
compiled and run, how does the system find all the classes? It uses classloaders to find and load the classes (and other
resources like images, movies, and properties files) that the program requires.

The Java runtime starts with one classloader (the bootstrap classloader) that finds classes on the local filesystem. You can
create your own classloaders to find classes from other places (such as over a network connection), to compose binary
classfiles on the fly, or do things while loading classes (like decrypting them, verifying digital signatures, etc.). Classloaders
are chained together so that each classloader except the bootstrap loader has a parent; if a classloader can’t find a class it
asks its parent to find it.

Every Class object contains a reference to the ClassLoader that defined it; you'll sometimes see code that says

x.getClass () .getClassLoader ()

136 Chapter 29. Reference Reading

CSCI 132 Basic Data Structures

The Bootstrap Classloader
Unless you are doing fairly fancy stuff, you never have to tell a classloader to load a class; just mentioning a class is good
enough. For example, the class A below refers to:

* other classes in the same package

¢ classes from other packages

* classes from a library written by someone else

* classes from the Java Core API

src/main/java/edu/Imu/cs/scratch/A. java

package edu.lmu.cs.scratch;
public class A {
org.bouncycastle.crypto.BlockCipher cipher =
new com.citysearch.util.crypto.HagenRedmannTwofishEngine () ;

void m(int x) A
java.util.List y = new java.util.ArrayList();
cipher.reset ();
B b = new B();
edu.lmu.cs.math.Complex c;
java.lang.System.out.println ("okay");

src/main/java/edu/Imu/cs/scratch/B.java

package edu.lmu.cs.scratch;
public class B {}

src/main/java/edu/Imu/cs/math/Complex. java

package edu.lmu.cs.math;
public class Complex {
// Class body goes here...

So I've written classes A, B, and Complex myself, but these other classes (BlockCipher, HagenRedmannTwofishEngine,
List, ArrayList, and System) already exist. But it doesn’t really matter who wrote them; what matters is the full class
names. A classloader needs to find:

edu.lmu.cs.scratch.A

edu.lmu.cs.scratch.B

edu.lmu.cs.math.Complex
org.bouncycastle.crypto.BlockCipher
com.citysearch.util.crypto.HagenRedmannTwofishEngine
java.util.List

java.util.ArrayList

java.lang.System

But how does the bootstrap class loader find all the classes? First, it turns the full class name into a filename — so the
first class in the list above would correspond, on a Windows system, to

29.2. Building Large Java Applications 137

CSCI 132 Basic Data Structures

edul\lmul\cs\scratch\A.class

(If you're compiling, and the compiler can’t find that class, it will look for

edul\lmu\cs\scratch\A. java

and compile that for you!!! How sweet.)

On almost every other system, the file names would be:

edu/lmu/cs/scratch/A.class
(or edu/lmu/cs/scratch/A.java)

Note: that filename is a relative path name! Relative to what? The bootstrap loader looks for it in this order:
1. The jar files in your JRE’s lib directory (rt.jar, jsse.jar, jce.jar, charsets.jar)

2. The jar files in your extensions directory — by default this is the JRE’s lib/ext directory. You can dump your own
jars in this directory, or tell your tool to use a different directory.

3. Each entry in the current classpath, in order.

Classpath? What's that?

Classpaths

A classpath is simply a list of directories and jar files. The bootstrap class loader searches a classpath when it looks for
the classes (or source files) it needs, after searching the platform and extension locations.

On Windows the classpath entries are separated with semicolons; on every other platform (I think) colons are used.

Example

c:\homework\stuff.jar;c:\other\crap;c:\mylibs\junit.jar

If you requested the class a.b.C from the bootstrap classloader, and that class was not found in rt.jar or in the extensions,
it would look for, in this order:

1. a\b\C.class in c:\homework\stuff. jar
2. c:\other\crap\a\b\C.class
3. a\b\C.class in c:\mylibs\junit. jar

Specify the classpath when invoking a tool, for example

javac —-cp c:\homework\stuff.jar;c:\other\crap;c:\mylibs\junit.jar *.Jjava

or, less flexibly, set the CLASSPATH environment variable (which may seem like a timesaver but can cause headaches).
It’s suggested you leave this environment variable unset and use a specific classpath when you invoke a tool. If you really
must know about this variable, consult Sun’s online docs.

138 Chapter 29. Reference Reading

CSCI 132 Basic Data Structures

More on Classloaders, Classpaths, and Related Topics

See Sun’s documentation on How Classes are Found.

Also note: once you start writing your own classloaders or you start deploying applications with multiple classloaders,
you’ll probably run into the case where a single class file is loaded by each classloader. Your application will think there
are two distinct classes, and, well, some confusing things may start to happen. Just be aware.

29.2.4 Building Your Application

Developers should be familiar with all three main approaches to building applications
¢ Using Commandline Tools
Everything you need to know is in Sun’s tool documentation.
* Using Build Files
The defacto standard application for building Java applications is Maven. (You can also use Ant, which is older.)
¢ Using IDEs

Once you understand how to build applications the hard way, you're ready to fire up an IDE and use a nice tool to
construct classpaths for your projects. Some IDEs just let you drag and drop jar files and directories into a window.
However you do it, you need to understand what a classpath is. Note that you can use maven and ant plugins for
modern IDEs, too!

Experienced programmers will get the most benefit out of an IDE and a Maven plugin. Beginners should probably pay
their dues by using the command line first. This gives you the best “sense” of how things fit together and are supposed to
work, enabling you to work much more efficiently with IDEs and plugins when you finally start using them.

End Of Topic

29.3 Ant Vs Maven Vs Gradle

Author: Baeldung

29.3.1 Introduction

In this article, we’ll explore three Java build automation tools that dominated the JVM ecosystem — Ant, Maven, and
Gradle.

We'll introduce each of them and explore how Java build automation tools evolved.

29.3. Ant Vs Maven Vs Gradle 139

http://java.sun.com/j2se/1.5.0/docs/tooldocs/findingclasses.html
http://java.sun.com/j2se/1.5.0/docs/tooldocs/index.html
http://maven.apache.org/
http://ant.apache.org/
https://www.baeldung.com/ant-maven-gradle#:~:text=While%20Ant%20gives%20flexibility%20and,the%20framework%20to%20do%20it.

CSCI 132 Basic Data Structures

29.3.2 Apache Ant

In the beginning, Make was the only build automation tool available beyond homegrown solutions. Make has been around
since 1976 and as such, it was used for building Java applications in the early Java years.

However, a lot of conventions from C programs didn’t fit in the Java ecosystem, so in time Ant took over as a better
alternative.

Apache Ant (“Another Neat Tool”) is a Java library used for automating build processes for Java applications. Addi-
tionally, Ant can be used for building non-Java applications. It was initially part of Apache Tomcat codebase and was
released as a standalone project in 2000.

In many aspects, Ant is very similar to Make, and it’s simple enough so anyone can start using it without any particular
prerequisites. Ant build files are written in XML, and by convention, they’re called build.xml.

Different phases of a build process are called “targets”.

Here is an example of a build.xml file for a simple Java project with the HelloWorld main class:

<project>
<target name="clean">
<delete dir="classes" />
</target>

<target name="compile" depends="clean">
<mkdir dir="classes" />
<javac srcdir="src" destdir="classes" />
</target>

<target name="jar" depends="compile">
<mkdir dir="jar" />
<jar destfile="jar/HelloWorld. jar" basedir="classes">
<manifest>
<attribute name="Main-Class"
value="antExample.HelloWorld" />
</manifest>
</jar>
</target>

<target name="run" depends="jar">
<java jar="jar/HelloWorld.jar" fork="true" />
</target>
</project>

This build file defines four targets: clean, compile, jar and run. For example, we can compile the code by running:

ant compile This will trigger the target clean first which will delete the “classes” directory. After that, the target compile
will recreate the directory and compile the src folder into it.

The main benefit of Ant is its flexibility. Ant doesn’t impose any coding conventions or project structures. Consequently,
this means that Ant requires developers to write all the commands by themselves, which sometimes leads to huge XML
build files that are hard to maintain.

Since there are no conventions, just knowing Ant doesn’t mean we’ll quickly understand any Ant build file. It’ll likely take
some time to get accustomed to an unfamiliar Ant file, which is a disadvantage compared to the other, newer tools.

At first, Ant had no built-in support for dependency management. However, as dependency management became a must
in the later years, Apache Ivy was developed as a sub-project of the Apache Ant project. It’s integrated with Apache Ant,
and it follows the same design principles.

140 Chapter 29. Reference Reading

CSCI 132 Basic Data Structures

However, the initial Ant limitations due to not having built-in support for dependency management and frustrations when
working with unmanagable XML build files led to the creation of Maven.

Apache Maven

Apache Maven is a dependency management and a build automation tool, primarily used for Java applications. Maven
continues to use XML files just like Ant but in a much more manageable way. The name of the game here is convention
over configuration.

While Ant gives flexibility and requires everything to be written from scratch, Maven relies on conventions and provides
predefined commands (goals).

Simply put, Maven allows us to focus on what our build should do, and gives us the framework to do it. Another positive
aspect of Maven was that it provided built-in support for dependency management.

Maven’s configuration file, containing build and dependency management instructions, is by convention called pom.xml.
Additionally, Maven also prescribes a strict project structure, while Ant provides flexibility there as well.

Here’s an example of a pom.xml file for the same simple Java project with the HelloWorld main class from before:

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>baeldung</groupId>
<artifactId>mavenExample</artifactId>
<version>0.0.1-SNAPSHOT</version>
<description>Maven example</description>

<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
<scope>test</scope>
</dependency>
</dependencies>
</project>

However, now the project structure has been standardized as well and conforms to the Maven conventions:

+—src | +—main | | +—java | | | —com | | | —baeldung | | | —maven | | | HelloWorld.java | | Il | —resources |
—test | +—java | —resources

As opposed to Ant, there is no need to define each of the phases in the build process manually. Instead, we can simply
call Maven’s built-in commands.

For example, we can compile the code by running:

mvn compile At its core, as noted on official pages, Maven can be considered a plugin execution framework, since all work
is done by plugins. Maven supports a wide range of available plugins, and each of them can be additionally configured.

One of the available plugins is Apache Maven Dependency Plugin which has a copy-dependencies goal that will copy our
dependencies to a specified directory.

To show this plugin in action, let’s include this plugin in our pom.xml file and configure an output directory for our
dependencies:

29.3. Ant Vs Maven Vs Gradle 141

CSCI 132 Basic Data Structures

<build>
<plugins>
<plugin>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-dependency-plugin</artifactId>

<executions>

<execution>
<id>copy-dependencies</id>
<phase>package</phase>
<goals>
<goal>copy-dependencies</goal>
</goals>
<configuration>
<outputDirectory>target/dependencies
</outputDirectory>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>

This plugin will be executed in a package phase, so if we run:
mvn package We'll execute this plugin and copy dependencies to the target/dependencies folder.

There is also an existing article on how to create an executable JAR using different Maven plugins. Additionally, for a
detailed Maven overview, have a look at this core guide on Maven, where some Maven’s key features are explored.

Maven became very popular since build files were now standardized and it took significantly less time to maintain build
files, comparing to Ant. However, though more standardized than Ant files, Maven configuration files still tend to get big
and cumbersome.

Maven’s strict conventions come with the price of being a lot less flexible than Ant. Goal customization is very hard, so
writing custom build scripts is a lot harder to do, compared with Ant.

Although Maven has made some serious improvements regarding making application’s build processes easier and more
standardized, it still comes with a price due to being a lot less flexible than Ant. This lead to the creation of Gradle which
combines the best of both worlds — Ant’s flexibility and Maven’s features.

Gradle

Gradle is a dependency management and a build automation tool that was built upon the concepts of Ant and Maven.
One of the first things we can note about Gradle is that it’s not using XML files, unlike Ant or Maven.

Over time, developers became more and more interested in having and working with a domain-specific language — which,
simply put, would allow them to solve problems in a specific domain using a language tailored for that particular domain.

This was adopted by Gradle, which is using a DSL based either on Groovy or Kotlin. This led to smaller configuration files
with less clutter since the language was specifically designed to solve specific domain problems. Gradle’s configuration
file is by convention called build.gradle in Groovy, or build.gradle.kts in Kotlin.

Notice that Kotlin offers better IDE support than Groovy for auto-completion and error detection.
Here is an example of a build.gradle file for the same simple Java project with the HelloWorld main class from before:

apply plugin: ‘java’

142 Chapter 29. Reference Reading

CSCI 132 Basic Data Structures

repositories {

mavenCentral ()

}

jar |
baseName = 'gradleExample'
version = '0.0.1-SNAPSHOT'

}

dependencies {
testImplementation 'junit:junit:4.12"'

}

We can compile the code by running:

Gradle classes At its core, Gradle intentionally provides very little functionality. Plugins add all useful features. In our
example, we were using java plugin which allows us to compile Java code and other valuable features.

9., ¢ 5.,

Gradle gave its build steps name “tasks”, as opposed to Ant’s “targets” or Maven’s “phases”. With Maven, we used Apache
Maven Dependency Plugin, and it’s a specific goal to copy dependencies to a specified directory. With Gradle, we can do
the same by using tasks:

task copyDependencies(type: Copy) { from configurations.compile into ‘dependencies’ } We can run this task by execut-
ing:

gradle copyDependencies 5. Conclusion In this article, we presented Ant, Maven, and Gradle — three Java build automa-
tion tools.

Not surprisingly, Maven holds the majority of the build tool market today.

Gradle, however, has seen good adoption in more complex codebases, for the following reasons:
* Lots of open-source projects such as Spring are using it now
¢]t is faster than Maven for most scenarios, thanks to its incremental builds
* It offers advanced analysis and debugging services

However that Gradle seems to have a steeper learning curve, especially if you're not familiar with Groovy or Kotlin.

End Of Topic

29.4 Polymorphism in Java (With Examples)

By Great Learning Team
https://www.mygreatlearning.com/blog/polymorphism-in- java/
Polymorphism is the ability of an object to take on different forms. In Java, polymorphism refers to the ability of a class

to provide different implementations of a method, depending on the type of object that is passed to the method.

To put it simply, polymorphism in Java allows us to perform the same action in many different ways. Any Java object that
can pass more than one IS-A test is polymorphic in Java. Therefore, all the Java objects are polymorphic as it has passed
the IS-A test for their own type and for the class Object.

This article also talks about two types of polymorphism in Java: compile time polymorphism and runtime polymor-
phism, Java polymorphism examples, method overloading, method overriding, why to use polymorphism in java, java
programming, and many more.

29.4. Polymorphism in Java (With Examples) 143

https://www.mygreatlearning.com/blog/author/greatlearning/
https://www.mygreatlearning.com/blog/polymorphism-in-java/
https://www.mygreatlearning.com/blog/web-stories/how-can-a-beginner-start-with-java-programming/
https://www.mygreatlearning.com/blog/method-overloading-in-java/
https://www.mygreatlearning.com/academy/learn-for-free/courses/java-programming?gl_blog_id=26164
https://www.mygreatlearning.com/academy/learn-for-free/courses/java-programming?gl_blog_id=26164

CSCI 132 Basic Data Structures

Polymorphism is a feature of the object-oriented programming language, Java, which implies that you can perform a
single task in different ways. In the technical world, polymorphism in Java allows one to do multiple implementations by
defining one interface.

1. What is Polymorphism?

What is Polymorphism in Java?
Real-Life Examples of Polymorphism
Types of Polymorphism

Method Overloading in Java

Method Overriding in Java

Runtime Polymorphism in Java

Compile-Time Polymorphism in Java

© ® =N kWD

Polymorphism in programming

_
e

Polymorphism variables

[y
—

. Why use Polymorphism in Java?

._
o

Characteristics of Polymorphism

—_
W

. Problems with Polymorphism

_.
B

Conclusion

29.4.1 What is Polymorphism?

The derivation of the word Polymorphism is from two different Greek words- poly and morphs. “Poly” means numerous,
and “Morphs” means forms. So, polymorphism means innumerable forms. Polymorphism, therefore, is one of the most
significant features of Object-Oriented Programming.

29.4.2 What is Polymorphism in Java?

Polymorphism in Java is the task that performs a single action in different ways.

So, languages that do not support polymorphism are not ‘Object-Oriented Languages’, but, ‘Object-Based Languages’.
Ada, for instance, is one such language. Since Java supports polymorphism, it is an Object-Oriented Language.

Polymorphism occurs when there is inheritance, i.e. there are many classes that are related to each other.

Inheritance is a powerful feature in Java. Java Inheritance lets one class acquire the properties and attributes of another
class. Polymorphism in Java allows us to use these inherited properties to perform different tasks. Thus, allowing us to
achieve the same action in many different ways.

144 Chapter 29. Reference Reading

https://www.mygreatlearning.com/blog/polymorphism-in-java/#what-is-polymorphism
https://www.mygreatlearning.com/blog/polymorphism-in-java/#what-is-polymorphism-in-Java
https://www.mygreatlearning.com/blog/polymorphism-in-java/#real-life-examples-of-polymorphism
https://www.mygreatlearning.com/blog/polymorphism-in-java/#types-of-polymorphism
https://www.mygreatlearning.com/blog/polymorphism-in-java/#method-overloading-in-java
https://www.mygreatlearning.com/blog/polymorphism-in-java/#method-overriding-in-java
https://www.mygreatlearning.com/blog/polymorphism-in-java/#runtime-polymorphism-in-java
https://www.mygreatlearning.com/blog/polymorphism-in-java/#compile-time-polymorphism-in-java
https://www.mygreatlearning.com/blog/polymorphism-in-java/#Polymorphism-in-programming
https://www.mygreatlearning.com/blog/polymorphism-in-java/#what-is-polymorphism-variables
https://www.mygreatlearning.com/blog/polymorphism-in-java/#why-use-polymorphism-in-java
https://www.mygreatlearning.com/blog/polymorphism-in-java/#characteristics-of-polymorphism
https://www.mygreatlearning.com/blog/polymorphism-in-java/#problems-with-polymorphism
https://www.mygreatlearning.com/blog/polymorphism-in-java/#conclusion
https://www.mygreatlearning.com/academy/learn-for-free/courses/oops-in-java/?gl_blog_26164
https://www.mygreatlearning.com/academy/learn-for-free/courses/inheritance-in-java/?gl_blog_26164
https://www.mygreatlearning.com/blog/inheritance-in-java/

CSCI 132 Basic Data Structures

29.4.3 Real-Life Examples of Polymorphism

An individual can have different relationships with different people. A woman can be a mother, a daughter, a sister, a
friend, all at the same time, i.e. she performs other behaviours in different situations.

The human body has different organs. Every organ has a different function to perform; the heart is responsible for blood
flow, lungs for breathing, brain for cognitive activity, and kidneys for excretion. So we have a standard method function
that performs differently depending upon the organ of the body.

Polymorphism in Java Example

A superclass named “Shapes” has a method “area()”. Subclasses of “Shapes” can be “Triangle”, “circle”, “Rectangle”,
etc. Each subclass has its way of calculating area. Using Inheritance and Polymorphism means, the subclasses can use
the “area()” method to find the area’s formula for that shape.

class Shapes {
public void area() {
System.out.println("The formula for area of ");
}
}
class Triangle extends Shapes {
public void area() {
System.out.println("Triangle is % * base * height ");
}
}

class Circle extends Shapes {
public void area() {
System.out.println("Circle is 3.14 * radius * radius ");
;
i
class Main {
public static void main(String[] args) {
Shapes myShape = new Shapes(); // Create a Shapes object
Shapes myTriangle = new Triangle(); // Create a Triangle object
Shapes myCircle = new Circle(); // Create a Circle object
myShape.area();
myTriangle.area();
myShape.area();
myCircle.area();

Output:

The formula for the area of Triangle is 2 * base * height The formula for the area of the Circle is 3.14 * radius * radius

Also Read: OOPs concepts in Java

29.4. Polymorphism in Java (With Examples) 145

https://www.mygreatlearning.com/blog/oops-concepts-in-java/?highlight=polymorphism

CSCI 132 Basic Data Structures

29.4.4 Types of Polymorphism

You can perform Polymorphism in Java via two different methods:
1. Method Overloading
2. Method Overriding

What is Method Overloading in Java?

Method overloading is the process that can create multiple methods of the same name in the same class, and all the
methods work in different ways. Method overloading occurs when there is more than one method of the same name in

the class.

Example of Method Overloading in Java

class Shapes {
public void area() {
System.out.println("Find area ");
}
public void area(int r) {
System.out.println("Circle area =

}

"+3.14*%r*r);

public void area(double b, double h) {
System.out.println("Triangle area="+0.5*b*h);
}
public void area(int 1, int b) {
System.out.println("Rectangle area="+1*b);

}

class Main {
public static void main (String(]
Shapes myShape = new Shapes|();

args) {
// Create a Shapes object

myShape.
myShape
myShape.
myShape.

area();

5);
6.0
6,2

’

1.2);

(
.area(
area (,
()i

area

Output:

Find area Circle area = 78.5 Triangle area=3.60 Rectangle area=12

146

Chapter 29.

Reference Reading

CSCI 132 Basic Data Structures

What is Method Overriding in Java?

Method overriding is the process when the subclass or a child class has the same method as declared in the parent class.

Example of Method Overriding in Java

class Vehicle{
//defining a method
void run () {System.out.println("Vehicle is moving");}
3
//Creating a child class
class Car2 extends Vehicle{
//defining the same method as in the parent class
void run () {System.out.println("car is running safely");}

public static void main(String args|[]){
Car2 obj = new Car2();//creating object
obj.run();//calling method

i

Qutput:

Car is running safely

Also, Polymorphism in Java can be classified into two types, i.e:
1. Static/Compile-Time Polymorphism

2. Dynamic/Runtime Polymorphism

What is Compile-Time Polymorphism in Java?

Compile Time Polymorphism In Java is also known as Static Polymorphism. Furthermore, the call to the method is
resolved at compile-time. Compile-Time polymorphism is achieved through Method Overloading. This type of poly-
morphism can also be achieved through Operator Overloading. However, Java does not support Operator Overloading.

Method Overloading is when a class has multiple methods with the same name, but the number, types, and order of
parameters and the return type of the methods are different. Java allows the user freedom to use the same name for
various functions as long as it can distinguish between them by the type and number of parameters.

Example of Compile-Time Polymorphism in Java

We will do addition in Java and understand the concept of compile time polymorphism using subtract()

package staticPolymorphism;

public class Addition

{

void sum(int a, int Db)

{

int ¢ = a+b;

System.out.println(“ Addition of two numbers :” +c); }
void sum(int a, int b, int e)

(continues on next page)

29.4. Polymorphism in Java (With Examples) 147

CSCI 132 Basic Data Structures

(continued from previous page)

{

int ¢ = a+b+e;

System.out.println (“ Addition of three numbers :” +c); }
public static void main(String[] args)

{

Addition obj = new Addition();

obj.sum (30,90);

obj.sum (45, 80, 22);

i

}

The output of the program will be:

Sum of two numbers: 120

Sum of three numbers: 147

In this program, the sum() method overloads with two types via different parameters.

This is the basic concept of compile-time polymorphism in java where we can perform various operations by using multiple
methods having the same name.

What is Runtime Polymorphism in Java?

Runtime polymorphism in Java is also popularly known as Dynamic Binding or Dynamic Method Dispatch. In this
process, the call to an overridden method is resolved dynamically at runtime rather than at compile-time. You can achieve
Runtime polymorphism via Method Overriding.

Method Overriding is done when a child or a subclass has a method with the same name, parameters, and return type as
the parent or the superclass; then that function overrides the function in the superclass. In simpler terms, if the subclass
provides its definition to a method already present in the superclass; then that function in the base class is said to be
overridden.

Also, it should be noted that runtime polymorphism can only be achieved through functions and not data members.

Overriding is done by using a reference variable of the superclass. The method to be called is determined based on the
object which is being referred to by the reference variable. This is also known as Upcasting.

Upcasting takes place when the Parent class’s reference variable refers to the object of the child class. For example:

class® "A{} "‘class’ "B "‘extends’ ‘A{} ""A a=""new 'B(); "~ //upcasting

Examples of Runtime Polymorphism in Java

Example 1:

In this example, we are creating one superclass Animal and three subclasses, Herbivores, Carnivores, and Omnivores.
Subclasses extend the superclass and override its eat() method. We will call the eat() method by the reference variable
of Parent class, i.e. Animal class. As it refers to the base class object and the base class method overrides the superclass
method; the base class method is invoked at runtime. As Java Virtual Machine or the JVM and not the compiler determines
method invocation, it is, therefore, runtime polymorphism.

class Animal/{
void eat () {
System.out .println("Animals Eat");

(continues on next page)

148 Chapter 29. Reference Reading

CSCI 132 Basic Data Structures

(continued from previous page)

}
}
class herbivores extends Animal{
void eat () {
System.out.println("Herbivores Eat Plants");
3
}
class omnivores extends Animal({
void eat () {
System.out.println("Omnivores Eat Plants and meat");
3
3
class carnivores extends Animal{
void eat () {
System.out.println("Carnivores Eat meat");
}
;
class main{
public static void main(String args|[]) {
Animal A = new Animal ();
Animal h = new herbivores(); //upcasting
Animal o = new omnivores(); //upcasting
Animal ¢ = new carnivores(); //upcasting
A.eat (

h (
o.eat (
c (

Output:
Animals eat Herbivores Eat Plants Omnivores Eat Plants and meat Carnivores eat meat
Example 2:

In this example, we are creating one superclass Hillstations and three subclasses Manali, Mussoorie, Gulmarg. Subclasses
extend the superclass and override its location() and famousfor() method. We will call the location() and famousfor()
method by the Parent class’, i.e. Hillstations class. As it refers to the base class object and the base class method overrides
the superclass method; the base class method is invoked at runtime. Also, as Java Virtual Machine or the JVM and not
the compiler determines method invocation, it is runtime polymorphism.

class Hillstations{

void location () {
System.out.println("Location is:");
}
void famousfor () {
System.out.println("Famous for:");

}

i
class Manali extends Hillstations {
void location () {
System.out.println("Manali is in Himachal Pradesh");
}

void famousfor () {

(continues on next page)

29.4. Polymorphism in Java (With Examples) 149

CSCI 132 Basic Data Structures

(continued from previous page)

System.out.println ("It is Famous for Hadimba Temple and adventure sports");
}
;
class Mussoorie extends Hillstations {
void location () {
System.out.println ("Mussoorie is in Uttarakhand");
}
void famousfor () {
System.out.println ("It is Famous for education institutions");
}
;
class Gulmarg extends Hillstations {
void location () {
System.out.println("Gulmarg is in J&K");
3
void famousfor () {
System.out.println ("It is Famous for skiing");
3
}
class main{
public static void main(String args[]) {
Hillstations A = new Hillstations();
Hillstations M = new Manali ();

Hillstations Mu = new Mussoorie();
Hillstations G = new Gulmarg();

A.location();
A.famousfor ();

M.location () ;
M. famousfor () ;

Mu.location();
Mu. famousfor () ;

G.location();
G.famousfor ();

}

Output:

Location is: Famous for: Manali is in Himachal Pradesh It is Famous for Hadimba Temple and adventure sports Mussoorie
is in Uttarakhand It is Famous for education institutions Gulmarg is in J&K It is Famous for skiing

150 Chapter 29. Reference Reading

CSCI 132 Basic Data Structures

Example of run-time polymorphism in java

We will create two classes Car and Innova, Innova class will extend the car class and will override its run() method.

class Car

{

void run ()

{

System.out.println(“ running”);

i

}

class innova extends Car

{

void run () ;

{

System.out.println (“ running fast at 120km”);
}

public static void main(String args|[])
{

Car ¢ = new innoval();

c.run();

s

}

The output of the following program will be;
Running fast at 120 km.
Another example for run-time polymorphism in Java

Now, let us check if we can achieve runtime polymorphism via data members.

class car

{

int speedlimit = 125;

i

class innova extends car

{

int speedlimit = 135;

public static void main(String args|[])
{

car obj = new innoval();
System.out .println (obj.speedlimit) ;
}

The output of the following program will be :
125

This clearly implies we can’t achieve Runtime polymorphism via data members. In short, a method is overridden, not the
data members.

29.4. Polymorphism in Java (With Examples) 151

CSCI 132 Basic Data Structures

Runtime polymorphism with multilevel inheritance

class grandfather

{

void swim()

{

System.out.println (¥ Swimming”);
I3

i

class father extends grandfather
{

void swim ()

{

System.out.println(“ Swimming in river”);
i

}

class son extends father

{

void swim()

{

System.out.println (“ Swimming in pool”);
}

public static void main(String args|[])
{

grandfather f1,f2,£f3;

f1l =new grandfather();

f2 = new father();

f3 = new son{();

fl.swim();

f2.swim() ;

f3.swim() :

I3

}

The output of the following program will be:
Swimming, Swimming in river, Swimming in pool

Another runtime polymorphism with multilevel inheritance example

class soundAnimal

{
public void Sound()

{

System.out.println("Different sounds of animal"); }

}

class buffalo extends soundAnimal

{
public void Sound()

{
System.out.println("The buffalo sound- gho,gho"); }

}

class snake extends soundAnimal

{
public void Sound()

{

System.out.println("The snake sound- his,his"); }

(continues on next page)

152 Chapter 29. Reference Reading

CSCI 132 Basic Data Structures

(continued from previous page)

}

class tiger extends soundAnimal

{
public void Sound()

{

System.out.println ("The tiger sounds- roooo, rooo"); }

}

public class Animal Main

{

public static void main(String[] args)

{

soundAnimal Animal = new soundAnimal (); soundAnimal buffalo = new buffalo();
soundAnimal snake = new snake();
soundAnimal tiger = new tiger();

Animal.Sound();
buffalo.Sound();
snake.Sound () ;
tiger.Sound();

}

}

The output of the following program will be;
The buffalo sound- gho,gho

The snake sound- his, his

The tiger sound- r0000,r0000

We hope you got an idea about runtime and compile-time polymorphism.

29.4.5 Polymorphic Subtypes

Subtype basically means that a subtype can serve as another type’s subtype, sounds a bit complicated?
Let’s understand this with the help of an example:

Assuming we have to draw some arbitrary shapes, we can introduce a class named ‘shape’ with a draw() method. By
overriding draw() with other subclasses such as circle, square, rectangle, trapezium, etc we will introduce an array of type
‘shape’ whose elements store references will refer to ‘shape’ subclass references. Next time, we will call draw(), all shapes
instances draw () method will be called.

This Subtype polymorphism generally relies on upcasting and late binding. A casting where you cast up the inheritance
hierarchy from subtype to a supertype is termed upcasting.

To call non-final instance methods we use late binding. In short, a compiler should not perform any argument checks,
type checks, method calls, etc, and leave everything on the runtime.

29.4. Polymorphism in Java (With Examples) 153

CSCI 132 Basic Data Structures

29.4.6 What is Polymorphism in Programming?

Polymorphism in programming is defined usage of a single symbol to represent multiple different types.

29.4.7 What is Polymorphism Variables?

A polymorphic variable is defined as a variable that can hold values of different types during the course of execution.

29.4.8 Why use Polymorphism in Java?

Polymorphism in Java makes it possible to write a method that can correctly process lots of different types of functionalities
that have the same name. We can also gain consistency in our code by using polymorphism.

Advantages of Polymorphism in Java

1. It provides reusability to the code. The classes that are written, tested and implemented can be reused multiple
times. Furthermore, it saves a lot of time for the coder. Also, the one can change the code without affecting the
original code.

2. A single variable can be used to store multiple data values. The value of a variable you inherit from the superclass
into the subclass can be changed without changing that variable’s value in the superclass; or any other subclasses.

3. With lesser lines of code, it becomes easier for the programmer to debug the code.

Characteristics of Polymorphism

Polymorphism has many other characteristics other than Method Overloading and Method Overriding. They include:
* Coercion
¢ Internal Operator Overloading

* Polymorphic Variables or Parameters

1. Coercion

Coercion deals with implicitly converting one type of object into a new object of a different kind. Also, this is done
automatically to prevent type errors in the code.

Programming languages such as C, java, etc support the conversion of value from one data type to another data type.
Data type conversions are of two types, i.e., implicit and explicit.

Implicit type conversion is automatically done in the program and this type of conversion is also termed coercion.

For example, if an operand is an integer and another one is in float, the compiler implicitly converts the integer into float
value to avoid type error.

Example :

class coercion {

public static void main(String[] args) {
Double area = 3.14*5*7;

(continues on next page)

154 Chapter 29. Reference Reading

https://www.mygreatlearning.com/blog/learn-c-programming-online-for-free/

CSCI 132 Basic Data Structures

(continued from previous page)

System.out .println (area);
String s = "happy";

int x=5;

String word = s+x;
System.out.println(word);

Output:
109.9 happy5

2. Internal Operator Overloading

In Operator Overloading, an operator or symbol behaves in more ways than one depending upon the input context or the
type of operands. It is a characteristic of static polymorphism. Although Java does not support user-defined operator
overloading like C++, where the user can define how an operator works for different operands, there are few instances
where Java internally overloads operators.

Operator overloading is the concept of using the operator as per your choice. Therefore, an operator symbol or method
name can be used as a ‘user-defined’ type as per the requirements.

For example, ‘+" can be used to perform the addition of numbers (same data type) or for concatenation of two or more
strings.

In the case of +, can be used for addition and also for concatenation.

For example:

class coercion {

public static void main(String[] args) {

String s = "happy";
String sl = "world";
int x=5;
int y=10;

System.out.println(s+sl);
System.out.println(x+y);

Output :
happyworld 15

Similarly, operators like**! &, and [** are also in the overload position for logical and bitwise operations. In both of
these cases, the type of argument will decide how the operator will interpret.

29.4. Polymorphism in Java (With Examples) 155

CSCI 132 Basic Data Structures

3. Polymorphic Variables or Parameters

In Java, the object or instance variables represent the polymorphic variables. This is because any object variables of a
class can have an IS-A relationship with their own classes and subclasses.

The Polymorphic Variable is a variable that can hold values of different types during the time of execution.

Parametric polymorphism specifies that while class declaration, a field name can associate with different types, and a
method name can associate with different parameters and return types.

For example:

class Shape

{

public void display ()

{

System.out .println("A Shape.");
}

}

class Triangle extends Shape

{

public void display ()

{

System.out.println("I am a triangle.");
}

}

class Main({

public static void main(String[] args)
{

Shape obj;

obj = new Shape () ;
obj.displavy();

obj = new Triangle();
obj.displav();

}

}

Output:
A Shape. I am a triangle.

Here, the obj object is a polymorphic variable. This is because the superclass’s same object refers to the parent class
(Shape) and the child class (Triangle).

29.4.9 Problems with Polymorphism

With lots of advantages, there are also a few disadvantages of polymorphism.
 Polymorphism is quite challenging while implementation.
« It tends to reduce the readability of the code.
* It raises some serious performance issues in real-time as well.
Type Identification During Downcasting
Downcasting is termed as casting to a child type or casting a common type to an individual type.
So, we use downcasting whenever we need to access or understand the behaviour of the subtypes.

Example,

156 Chapter 29. Reference Reading

CSCI 132 Basic Data Structures

This is a hierarchical example

Food> Vegetable> Ladyfinger, Tomato

Here, tomato and ladyfinger are two subclasses.

In downcasting, we narrow the type of objects, which means we are converting common type to individual type.
Vegetable vegetable = new Tomato();

Tomato castedTomato = (Tomato) vegetable;

Here we are casting common type to an individual type, superclass to subclass which is not possible directly in java.
We explicitly tell the compiler what the runtime type of the object is.

Fragile base class problem

Fragile base class problem is nothing but a fundamental architectural problem.

Sometimes the improper design of a parent class can lead a subclass of a superclass to use superclass in some unpredicted
ways.

The fragility of inheritance will lead to broken codes even when all the criteria is met.
This architectural problem is termed as a fragile base class problem in object-oriented programming systems and language.

Basically, the reason for the fragile base problem is that the developer of the base class has no idea of the subclass design.
There is no solution yet for this problem.

29.4.10 Conclusion

We hope you must have got a basic idea of polymorphism in Java and how we use it as well as problems related to them.

End Of Topic

29.5 Unable To Run .JAR Files in Windows 10/ 11 ? Here’s the Solu-
tion

May 28, 2022 By Madhuparna
https://thegeekpage.com/unable-to-run- jar-files-in-windows- 10-heres-the-solution/#comment- 16138 1

A JAR file is based on a Java archive file format that may include a Java program inside it. Although you can use a zip
file extracting software like the 7zip to extract the .JAR files, it won’t allow you to run a compete Java app based on .JAR.

So, if you are facing an issue while opening a .jar file, you can try the below methods.
Table of Contents
[TOC]

29.5. Unable To Run .JAR Files in Windows 10/ 11 ? Here’s the Solution 157

https://thegeekpage.com/author/madhu/
https://thegeekpage.com/unable-to-run-jar-files-in-windows-10-heres-the-solution/#comment-161381

CSCI 132 Basic Data Structures

29.5.1 Method 1 — Download and run jarfix

Jatfix is a free utility which repairs jar files and let you run files which you are unable to run.
\1. Just go to this link and download jarfix.
2.Now, Install it after downloading .

Now, try again.

29.5.2 Method 2: By Creating a .bat File

Step 1: Open notepad and type the below text on it:

java —jar sample.jar

E *Untitled - Notepad

File Echit View

java -jar sample.jar

*Note — Replace the highlighted portion with whatever is the name of your . jar file.

Step 2: Save the file with any name that suits you, in the same location where your .jar file is saved, followed by .bat
extension.

For instance, here we named the file as run.bat and changed the Save as type to All Files.

Press the Save button.

158 Chapter 29. Reference Reading

https://jarfix.en.softonic.com/

CSCI 132 Basic Data Structures

| save As et

« “ A mm * This.. * MNewVolu.. 3 W & 2 Search Mew Volume (D)

Organize v Mew folder ZEER (7]
‘ Downloads # * Mame Date moedified Type
Documents # | sample.jar 6/17/2020 4:08 PM 7IP |

[&=] Pictures -
30 minutes walk

- ew Volume (D
Pizwik

B Videos

LU 4

File name: | run.bat

Save as type: | All Files

Cancel

~ Hide Folders Encoding:

Now, double-click on the run.bat file and your .jar file will open smoothly.

Mame

run.bat
|£| sample.jar

29.5.3 Method 3: By Downloading Java

Step 1: Go to Java.com and download Java from the link

Step 2: On the website download page, click on the Download button in red to download the Java setup file.

29.5. Unable To Run .JAR Files in Windows 10/ 11 ? Here’s the Solution 159

http://Java.com

CSCI 132 Basic Data Structures

Download Help

All Java Downloads

If you want to download
Jawva for another computer
or Operating System, click
the link below.

All Java Downloads

Report an issue

Why am | always redirected
to this page when visiting a
page with a Java app?

» Learn more

» Report an issue

Java Download

Download Java for your desktop computer nowl

Version 8 Update 251
Releaze date April 14, 2020

& Important Oracle Java License Update
The Oracle Java License has changed for releases starting April 16, 2018.

The new Cracle Technology Metwork License Agreement for Cracle Java SE is substantially
different from prior Oracle Java licenses. The new license permits certain uses, such as personal
use and development use, at no cost - but other uses authorized under prior Oracle Java
licenses may no longer be available. Flease review the terms carefully before downloading and
uging this product. An FAQ is available here.

Commercial license and support is availahble with a low cost Java SE Subscription.

Oracle also provides the latest OpenJDK release under the open source GFL License at
jdk java.net.

Java Download /

Step 3: Once the setup is complete, go to the location where the . jar file is saved and double-click on it to run the file.

160

Chapter 29. Reference Reading

CSCI 132 Basic Data Structures

F.

= | samplejar Extract — O >
Home Share View Compressed Folder Tools 0

+ # ThisPC » Downloads » samplejar v | O O Search s..

[&J

e
s

B This PC Mame Type
“J 3D Objects] samplej JAR File
B Desktop
|j§ Documents
; Cownloads

J‘) Music

&= | Pictures

m Videos
= 050
= Mew Volume (D:

- Mew Volurme (E:)
LY 4 >

If it doesn’t open up try the 2nd method.

29.5.4 Method 4: Through Properties

Step 1: Simply right-click on it and select Properties from the context menu.

29.5. Unable To Run .JAR Files in Windows 10/ 11 ? Here’s the Solution 161

CSCI 132 Basic Data Structures

[<J

g |

= | samplejar Extract
Home Share View Compressed Folder Tools
T 5 » This PC » Downloads * samplejar w | D
. ’“ Mame B Type
EH This PC
- 30 Objects D sample.jar AR File
B Desktop e
Documents Cut
; Downloads Copy

J') Music Delete ’
=] Pictures

Properties
B Videos
i= 05(C)

Step 2: In the Properties window, click on Change.

']

Search s...

162 Chapter 29. Reference Reading

CSCI 132 Basic Data Structures

|+: sample,jar Properties >

General Securty Details Previous Versions

é; sample jar
Type of file: ZIP File (.zip)
Opens with: = Java(TM) Platform SE b Change...
Location: D4
Size: 3.98 KB {4,077 bytes)
Size on disk: 4.00 KB (4,096 bytes)
Created: Wednesday, June 17, 2020, &:00:25 FM
Modified: Wednesday, June 17, 2020, 4:09:09 PM
Accessed: Today, June 17, 2020, 1 minute ago
Mtributes: [|Readonly [_] Hidden Advanced...
Security: This file came from anaother [Unblock

computer and might be blocked to
help protect this computer.

oK Cancel Apply

Step 3: In the next window, click on More apps.

29.5. Unable To Run .JAR Files in Windows 10/ 11 ? Here’s the Solution

163

CSCI 132 Basic Data Structures

How do you want to open .zip files
from now on?

Keep using this app

Java(TM) Platform SE binary

Other options

VLC media player
o
E Windows Explorer

E Look for an app in the Microsoft Store

More apgs b

oK

Step 4: Scroll down and click on Look for another app on this PC.

164 Chapter 29. Reference Reading

CSCI 132 Basic Data Structures

How do you want to open .zip files
from now on?

i

Office AML Handler
Paint

sSnagit Editor
Windows Media Player

Word

WordPad

Look for another app on this PC

OK

Step 5: It takes you to the File Explorer, click on the C drive shortcut and follow the below path step by step:
¢ Double-click on Program Files (x86)
¢ Double-click on Java
¢ Double-click on jrel.8.0_251
* Double-click on bin

¢ Select javaw

29.5. Unable To Run .JAR Files in Windows 10/ 11 ? Here’s the Solution 165

CSCI 132 Basic Data Structures

|£:| Open with... >
“ “ A am » ThisPC » 0S(C) w] 2 Search Q5 ()

Organize - Mew folder == » [H 0
_J 3D Objects A Name Date modified H
I Cesktop OneDriveTemp 472472020 %16 PM Fi
Documents Perflogs 5/2/2020 11:44 PM Fi
3 Downloads PostVistaPE 8/13/2016 7:25 PM Fi

. Frogram Files B/2/2020 5:26 PM Fi
J‘) Music
" Program Files (x26) 172020 5:46 PM Fi
ct
I&] Pictures ProgramData 6/17/2020 5:46 PM Fi
B Videos Recovery 3/17/2020 11:22 PM Fi
- 05(C) tmp 6/22/2017 342 AM Fi
= Mew Volume (D Uzers 0/14,/2020 2:04 PM Fi w
Bolmsns Wimly vimm = T N < 2
File name: ~ | | Programs W
Open Cancel

Step 6: As you double-click on javaw, it takes you back to the Properties window. Click on Apply and then OK.

166 Chapter 29. Reference Reading

CSCI 132 Basic Data Structures

|+ sample,jar Properties pd

General Securty Details Previous Versions

| -__%; | sample jar

Type of file: ZIP File {zip)
Opens with: @ Java(TM) Platform S5E b Change... i

Location: D
Size: 398 KB (4,077 bytes)
Size ondisk: 4.00 KB (4,096 bytes)

Created: Wednesday, June 17, 2020, 6:00:25 PM
Modified: Wednesday, June 17, 2020, 4:09:09 PM
Accessed: Today, June 17, 2020, 1 minute ago

Attributes: []Readonly [] Hidden Advanced...

Security: This file came from another U
mputer and might be blocked to
p protect this computer.

oK Cancel Apply

Your .jar file should open now. If it still doesn’t open, try the 3rd method.

29.5. Unable To Run .JAR Files in Windows 10/ 11 ? Here’s the Solution 167

CSCI 132 Basic Data Structures

29.5.5 Method 5: Using Command Prompt

Step 1: Click on the Start button on your desktop and type Command Prompt in the search field. Right-click on the
result and select Run as administrator.

All Apps Documents Email Web

Best match

Command Prompt

App M/

Run as administrator

dl

Search the web

[l Open file location
2 command prompt .

Pin to Start

Setti 2 i
ings (2) -3 Pin to taskbar

Step 2: In the Command Prompt window, type the below command in the below format and hit Enter:

ftype jarfile="C:\Program Files (x86)\Java\jrel.8.0_251\bin\javaw.exe" —-jar "%1" %*

BN Administrator: Command Prompt — O X
icrosoft Windows [Version 10.6.

2019 Microsoft Corporation.

>»ftype jarfi

le="C:"

Files val\jrel.8.8 251\bin\javaw.exe

*Note — The path entered is the same path for javaw as illustrated in Method 2.

This should resolve your issue and you can open the .jar file. However, if problem persists you can try the 4th method.

168 Chapter 29. Reference Reading

CSCI 132 Basic Data Structures

29.5.6 Method 6: Set file association
1 -Right click on the jar file and click on Open with and then click on choose another app.
Mame B Date modified Type Size
@J sample.jar Sat-28-Mav-22 2:05PM Executable Jar File 5KB

d O & B W

%| Open Enter

o Open with > [&| Java(TM) Platform SE binary
7 Add to Favorites B 5earch the Microsoft Store
£9 Compress to ZIP file Choose another app

Copy as path Ctrl=+Shift=C

22 Properties Alt=Enter

2 — Click on More apps

How do you want to open this file?

Keep using this app

Java(TM} Platform SE binary

Mew

Other options

- Look for an app in the Microsoft Store

More apps -}

3 — Click on Look for another app on this PC

29.5. Unable To Run .JAR Files in Windows 10/ 11 ? Here’s the Solution 169

CSCI 132 Basic Data Structures

Look for another app on this PC

N
Always use this app to open Jjar files
oK
4 — Now, go to
* C:
¢ Program Files
» Java
¢ jre-Version-Number
* bin
C:\Program FilestJava'jrel.8.0_291%bin ~ C
folder
Marme Date modified Type
dtplugin Fri-26-Mar-21 9:58 AM File folder
plugin Fri-26-Mar-21 9:52 AM File folder
SEMVEr Fri-2&-Mar-21 9:58 AM File folder
jabswitch.exe Fri-26-Mar-21 %:58 AM Application
| £ java.exe v Fri-26-Mar-21 958 AM Application

1
5 — Select java.exe and click OK.

If all of the above methods fail, search for jarfix program on Google and download it. This will instantly fix the issue.

170 Chapter 29. Reference Reading

CSCI 132 Basic Data Structures

29.6 End Of Section

Java Language

End Of Section

29.6. End Of Section 171

CSCI 132 Basic Data Structures

172 Chapter 29. Reference Reading

Part 11

Data Structures

173

CHAPTER
THIRTY

DATA STRUCTURES AND ALGORITHMS

30.1 Textbooks and Online Sources

Data Structures and Algorithms in Java Second Edition Robert Lafore
Data Structures and Algorithms in Java 6th Edition Michael T. Goodrich
Algorithms (4th Edition) 4th Edition by Robert Sedgewick and Kevin Wayne

Open Data Structures |

End Of Topic

175

https://www.amazon.com/Data-Structures-Algorithms-Java-2nd/dp/0672324539/ref=sr_1_1?crid=M8ANR5REE3Y8&keywords=robert+lafore&qid=1655244033&sprefix=robert+lafore%2Caps%2C126&sr=8-1
https://www.amazon.com/Data-Structures-Algorithms-Michael-Goodrich/dp/1118771338/ref=sr_1_6?keywords=data+structures+and+algorithms&qid=1655244532&s=books&sprefix=datastructures+and+%2Cstripbooks%2C130&sr=1-6
https://www.amazon.com/gp/product/032157351X/ref=as_li_qf_sp_asin_il_tl?ie=UTF8&tag=algs4-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=032157351X
https://opendatastructures.org/

CSCI 132 Basic Data Structures

176 Chapter 30. Data Structures and Algorithms

CHAPTER
THIRTYONE

ARRAY TECHNIQUES

e Array Wrap Around
e Array Add and Delete Data Continuously

End of Topic

31.1 Array Warp Around

31.1.1 Key Ildeas

* Place data in an array.

— If the data element is “full/occupied”, look to the right for the next empty element and wrap around to the
beginning element if at the end.

31.1.2 Lecture Code

* DS132SU_WrapAround

* Programmer: Jim Goudy

* Project: Wrap Around Array

This shows how to wrap around in an around.
Meaning, the program looks to see if an array
element is open. If it is not, then look to
the right. Continue looking to the right,
till the next available element is open.

*

*/
import java.util.Random;
import java.util.Scanner;
public class DS_WrapAround {

static int ArraylLength = §;

(continues on next page)

177

CSCI 132 Basic Data Structures

(continued from previous page)

static String[] myArray = new String[ArrayLength];
static int maxVal = ArrayLength;

static Scanner myScan = new Scanner (System.in);
static Random RNG = new Random() ;

static int myRNG() {
// Generate a random number
// within the number of array elements
return RNG.nextInt (maxVal);

static void printArray () {
// print the array

for (int ¢ = 0; ¢ < myArray.length; c++) {

if (myArray[c] == null) {
System.out.print (" - [");
} else {
System.out.print (myArray[c] + " [");
}

public static void main(String[] args) {

String run = "y";
int alIndex = -1;
boolean check = true;
int boxCntr = 0;

String quit = "y";
// assign values to the array - go to right if occupied
// this loops continues till the array is full
while (run.equals("y")) A
alndex = myRNG() ;
System.out.print ("\nComputer chooses " + alndex + "\n");

// fill the array element
while (check) {

if (myArray[alIndex] == null) {
//array index (box) 1is empty
myArray[alIndex] = " X";

// this variable keeps track of

// the total number of elments that
// are occupied/filled

boxCntr++;

// sets variable to exit
// the inner while loop
check = false;

// check if all the array elements are filled
if (boxCntr == myArray.length) {

(continues on next page)

178 Chapter 31. Array Techniques

CSCI 132 Basic Data Structures

(continued from previous page)

run = "n"
}
} else {
// array index (box) is not empty
alndex++;
System.out.println("move right " + alndex);

// 1f the index is at the end of the array
// wrap around to the first element 0

if (aIndex == myArray.length) {

alndex = 0;

System.out.println("move right " + alIndex);
}

check = true;
printArray();

}

/*

Note: Since the computer use a random generator to pick numbers - individual results.
owill vary

Example Output:

Computer chooses 5
-/ =0 =1 =1 =1 X1 =1 =1

Computer chooses 6

- === - XX -
Computer chooses 7
- == - - XX] X/

Computer chooses 7

move right 8

move right 0

X/ -1 -1 -1 -1X1]X] X
Computer chooses 6

move right 7

move right 8

move right 0

move right 1

X/ X -/ -1 -/ X] X | X/
Computer chooses 3
X/ X - X -/ XX/ X/

Computer chooses 0

move right 1

move right 2

X | X | X[x| -] XX] X
Computer chooses 5

move right 6

move right
move right
move right
move right
move right
move right

W N RO

(continues on next page)

31.1. Array Warp Around 179

CSCI 132 Basic Data Structures

(continued from previous page)

move right 4
X | X | X | X | X | X | X | X |

End Of Topic

31.2 Array Add and Delete Data

31.2.1 Key Ideas

 In working with arrays, keeping data continuous is a good practice the majority of the time. If data in an element
is deleted, the data in the elements to the right should be shifted left to remove the empty space.

¢ Also, there may be times when data has to be inserted into an array that has continuous data elements. In this case,
data is shifted to the right to create a space where the new data can be inserted.

Tip: In many cases, arrays are usually set to have more elements than is needed. Therefore, it is important to create a
variable that will alway track the number of items in the array.

31.2.2 Lecture Code

/*

*

* Project: Add Delete In an Array
* Programmer: J Goudy

*/

public class DS_ArraysAddDelete {

static String[] arrString;
static int arrStrDataCount = 0;

static wvoid loadStringArray () {
// this is a helper function to setup our example array

String[] names = {"Adam", "Bobby", "Howard", "Mary", "Zuzu"};
//load names

for (int ¢ = 0; ¢ < names.length; c++) {
arrString[c] = names|[c];

//set our number of data items
arrStrDataCount = names.length;

(continues on next page)

180 Chapter 31. Array Techniques

CSCI 132 Basic Data Structures

(continued from previous page)

// print number of items
System.out.println("DataCount = " + arrStrDataCount);

printArray (arrString, arrStrDataCount);

static void printArray(String[] theArray, int dataCount) {
// This function prints the array.
// Note that an array 1s being passed to it.

// for spacing
System.out.println();

// iterate through the array and print the data
for (int 1 = 0; 1 < dataCount; i++) {
System.out.print (theArray[i] + " ");

System.out.println("\n-———————————— \n");

static void insertStringByPos (int pos, String aName) {
/) - Do some checks —-————————————————————

// check if position is withing array bounds
if (pos > arrStrDataCount) {
System.out.println("Error out array bounds");

// exit the function
return;

// check if the array is full

if (arrStrDataCount >= arrString.length) {
System.out.println("Array is full");
return;

/) e Insert Code ——————————————————————————
// shift to right

// note that the loop is starting at the end and

// working backwards to the insert spot (pos)

for (int i = arrStrDataCount; i > pos; i——) {

arrString[i] = arrString[i - 1];
// insert the new name
arrString[pos] = aName;

// increment our data Count
arrStrDataCount++;

// print the array to show data was inserted

(continues on next page)

31.2. Array Add and Delete Data

181

CSCI 132 Basic Data Structures

(continued from previous page)

printArray (arrString, arrStrDataCount);

static void deleteByPos (int pos) {
// check if there is contents
if (arrStrDataCount <= 0) {
System.out.println ("Array is empty\n");
return;

// check if the position to delete is out of bounds

if (pos >= arrStrDataCount) {
System.out.println("Pos is out of bounds\n");
return;

/) —mmmm = Delete Code —————————————————————

// shift loop

// note that the loop starts at the element location

// that is being deleted

for (int i = pos; i1 < arrStrDataCount; i++) {
arrString[i] = arrString[i + 1];

// decrease the item count by 1
arrStrDataCount——;

printArray (arrString, arrStrDataCount);

public static void main(String[] args) {

// instantiate the data array
arrString = new Stringl[8];

try {

// setup the demo array
loadStringArray () ;

// insert "Bubba" in the third positon of the array
insertStringByPos (2, "Bubba");

// delete the data in the second
// element/position of the array
deleteByPos (1) ;

} catch (Exception e) {

System.out.println(e.getMessage());

System.out.println ("\n\nbye\n");

182 Chapter 31. Array Techniques

CSCI 132 Basic Data Structures

End Of Topic

31.2. Array Add and Delete Data 183

CSCI 132 Basic Data Structures

184 Chapter 31. Array Techniques

CHAPTER
THIRTYTWO

BIG O NOTATION

32.1 Key Ildeas

* Big O Notation

Definition

Big O notation is used in Computer Science to describe the performance or complexity of an algorithm. Big O specifically
describes the worst-case scenario and can be used to describe the execution time required or the space used (e.g. in
memory or on disk) by an algorithm. - Rob Bell

32.2 Reading

ON_Visualizing Big O Notation

32.3 Videos

https://youtu.be/v4cd104zkGw
https://youtu.be/Q_1M2JaijjQ

End Of Topic

32.4 Visualizing Big O notation

From https://mellowd.co.uk/ccie/?p=6122
Author: Darren O’Connor

I'm currently learning as much computer science as I can on the side. I've come across Big O notation a few times already,
and while I understand it, I'm much more of a visual guy.

It’s rather easy to use Python and matplotlib to graph out how a function’s execution time grows as the size of the input
grows. The important thing to note is not total execution time, but rather how the runtime of that function grows in
relation to the input size. This can be plotted onto a graph which should give us a nice representation of Big O notations.

185

https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation
https://youtu.be/v4cd1O4zkGw
https://youtu.be/Q_1M2JaijjQ
https://mellowd.co.uk/ccie/?p=6122
https://en.wikipedia.org/wiki/Big_O_notation

CSCI 132 Basic Data Structures

Note too that Big O notations always show the worst case. For this reason, I'll ensure to use values which the function will
have to do the most work for.

32.4.1 O(1)

O(1) means constant time. No matter what size the input, the runtime will always be the same. A simple example is
finding the middle number in a list. I'll ensure that all code return the amount of time a command was run in the function.
This may make the code look just a bit bloated, but for a good reason.To find the center of a list we simply divide the
length of the list in two, and return that number. It does not matter if a list has 10 elements or 100 elements, the same
amount of steps is performed:

def Ol (input) :
count = 0
result = input[len(input) / 2]
count += 1
return count

I have created 5 lists. The first is length 10, the second the length 20, and so on. T'll get the returned values and plot them.

1.06 ! ! ! D{!l] . ! .
w
E E E E E E E
+~ 1.00 : ® : ® : ®
= : : : : : :
=
&

0.94 ; | ; ; ; | ;

10 15 20 25 30 35 40 45 50
input size

O(1) plot

As can be seen, it doesn’t matter the size of the input. It will always run at the same constant time.

186 Chapter 32. Big O Notation

http://reason.To

CSCI 132 Basic Data Structures

32.4.2 O(logN)

O(logN) increases as the input size goes up. However, it goes up as a log of the input size. This means that you can
exponentially increase your input size, without linearly increasing the processing time to match.

def OlogN (input) :
def search(length, count):
count += 1
length /= 2
if length == 1 or length ==
return 1 + count
else:
return 1 + search(length, count)
return 1 + search(len(input), 1)

O(logN) plot

O(logN)

38 . . S ——

34

Run Time

32

30 |-

28 | | | |
0 100000 200000 300000 400000 500000

Input Size

The run time is going up but look at the size of the inputs at the bottom. I start with 10,000 and move up to 500,000.
The number of steps has increased, but not significantly.

32.4. Visualizing Big O notation 187

CSCI 132 Basic Data Structures

32.4.3 O(N)

O(N) is linear. This means that the run time is linearly matched to the input size. They should increase at exactly the
same rate.

def ON (input, check):
count = 0
for number in input:
count += 1
if number == check:
return 1 + count

O(N) plot

50000 O(N)

40000

30000

Run Time

20000

10000

0 ; | | ;
0 10000 20000 30000 40000 50000
Input Size

There is a 1:1 correlation between input size and run time. As expected this produces a linear graph.

188 Chapter 32. Big O Notation

CSCI 132 Basic Data Structures

32.4.4 O(NA2A)

O(N~27)’s runtime will go up as a square of the input size. The runtime goes up faster than your input sizes, so processing
time increases rapidly. This is usually when you iterate through multiple loops at the same time like so:

def ON2 (input) :
count = 0
for i in input:
count += 1
for j in input:
count += 1
return 1 + count

O(NA2A) plot

O(N™2)

1000000 , , !

800000

600000

400000

200000

ﬂ]] | | |]]]
100 200 300 400 500 600 700 800 900 1000
Input Size

32.4. Visualizing Big O notation 189

CSCI 132 Basic Data Structures

32.4.5 O(NA3A)

O(N”3%)is merely O(N”2”) with another exponent. I wanted to show the difference by simply changing the exponent.

def ON3 (input) :
count = 0
for i in input:
count += 1
for j in input:
count += 1
for k in input:
count +=1
return 1 + count

O(NA3A) plot

Graphs increase rapidly as the exponent increases.

O(N™3)

1000000 !

800000

600000

400000

200000

0 : | | |
0 20 40 60 80 100

Input Size

190 Chapter 32. Big O Notation

CSCI 132 Basic Data Structures

32.4.6 Conclusions

I’'ve not shown every single type of algorithm, as I just wanted to show the ones I have the most experience with. It’s nice
to have a visual representation of these things as it really drills down just how fast your runtime can increase with larger
inputs.

You can find my code used over here. https://github.com/mellowdrifter/Blog_Code/tree/master/Big_O

End Of Topic

32.5 Big O Notation - Explained

Tip: Big O notation is generally referencing worst case scenario for the algorithm

32.5.1 O(1) - Constant Time

O(1) means that it takes a constant time to run an algorithm, regardless of the size of the input. In programming, a lot of
operations are constant.

Here are some examples:
* math operations
* accessing an array via the index
* accessing a hash via the key
* pushing and popping on a stack
* insertion and removal from a queue

* returning a value from a function

int theArray = new int[Integer.MAX_ VALUE]

for(int ¢ = 0; ¢ < Integer.MAX_ VALUE; c++)
{

// This step is 0O(1)

theArrayl[c] = c;

32.5.2 O(n) - Linear Time

O (n) means that the run-time increases at the rate/size as the input.

// n is some integer

// The for statement is 0 (n)
// if n is small, it will take less time
// 1f n is very large number, it will take more time

(continues on next page)

32.5. Big O Notation - Explained 191

https://github.com/mellowdrifter/Blog_Code/tree/master/Big_O
https://github.com/mellowdrifter/Blog_Code/tree/master/Big_O

CSCI 132 Basic Data Structures

(continued from previous page)

for(int ¢ = 0; ¢ < n; c++)
{
// This step is 0O(1)
System.out.println (c)

32.5.3 O(n?) - Quadratic Time

O(n"2”) means that the calculation runs in quadratic time.
Examples of algorithms having worst-case run times of O(n”2"):
* Bubble Sort
* Insertion Sort

¢ Selection Sort

Tip: The general pattern is a for statement within a for statement

// Bubble Sort

/*
* Programmer: James Goudy
* Project: Bubble Sort
*/
package com.mycompany.bubblesort_lecturecode;

import java.util.Random;
class BubbleSort {

// arrInt is an array of integers

// numDataElements is the actual count

// of elements of data in the array

// algorithm assumes the data is contiguous
int arrInt([];

int numDataElments;

public BubbleSort (int[] arrInt, int numDataElments)
this.arrInt = arrInt;
this.numbatakElments = numDataElments;

public void Sort () {
/7

int n = numDataElments;

for (int ¢ = 0; ¢ < n; c++) {
for (int j = 1; j < (n); Jj++) |

// check if the left element 1is
// greater to the one on the right
// "Bubble" the lowest to the left

{

(continues on next page)

192

Chapter 32. Big O Notation

CSCI 132 Basic Data Structures

(continued from previous page)

if (arrInt[j - 1] > arrInt([j]) A
// swap left element arr[j-1]
// with the one on the right and arr(j]

// store left one in temp

int temp = arrInt([j - 1];
//copy the right into the left
arrInt[j - 1] = arrInt[]j];
//copy the left into the right
arrInt[j] = temp;

public class BubbleSort_LectureCode {

static int arrSize = 8;
//static int theArray[] = new int[arrSize];
static int theArray|[] ={3,60,35,2,45,320,5,1};

static void fillTheArray ()

{
Random RNG = new Random() ;
for(int ¢ = 0; ¢ < arrSize; c++)
{

theArray[c] = RNG.nextInt (0, (arrSize*10));

static void printArray(int anArray([], int numOfDataElements)

{
System.out.println("");
for (int i1 = 0; i < numOfDataElements; i++) {
System.out.print (anArray[i] + " ");
}
System.out.println("\n-————————————~ \n") ;

public static void main (String[] args) {

// option to randomly fill the array
//fillTheArray();

printArray (theArray, arrSize);

BubbleSort bs = new BubbleSort (theArray, arrSize);
bs.Sort ();

printArray (theArray, arrSize);

(continues on next page)

32.5. Big O Notation - Explained

193

CSCI 132 Basic Data Structures

(continued from previous page)

h
/*
3 60 35 2 45 320 5 1

https://betterprogramming.pub/big-o-notation-a-simple-explanation-with-examples-a56347d1daca

End Of Topic

194 Chapter 32. Big O Notation

https://betterprogramming.pub/big-o-notation-a-simple-explanation-with-examples-a56347d1daca

CHAPTER
THIRTYTHREE

LINKED LISTS

Definition

Linked List is a set of nodes where each node contains a data field(s) and a reference(link) to the next node in the list.

33.1 Benefits of a linked list

* Not limited to a specific data space amount.

 Easy to add and delete data

33.2 Disadvantages of a linked list

¢ The retrieval time of stored data is dependent on the size of the list and the position/node of the data in the list.
O(n)

33.3 Types of linked lists

* Singly linked lists
e Doubly linked lists
e Doubly linked lists with links as sub class

e Circular linked lists

End of Topic

195

CSCI 132 Basic Data Structures

33.4 Singly Linked List

Ternary Operator
[Singly Linked List](# Singly-Linked-List-Code)
Si

Definition

singly linked list is a type of linked list that is unidirectional. It can be traversed in only one direction from the head to
the last node (tail). The last node always points to null

33.4.1 Ternary Operator

Ternary Operator is an instruction that consists of three parts. Condition Part - test if something is true or
false True Part - what is returned if the condition is true False Part - what is returned if the condition is false

x = **(Conditional Part) ** ? True Part : False Part;

// Example
y = 3;
x = (y < 4) ? "y is less than four": "y is greater than four"

System.out .write (x);

// Output
// y is less than four

33.4.2 Lecture Code

Singly Linked List Code

The Link and the controlling Linked List are written as two separate classes

/
Singly Linked List

singlylinkedlists_rev3
Programmer: James Goudy

%% % % % %

*/
package singlylinkedlists_rev3;

class Link
{

// Data goes here
public String city = "";
public int population = 0;

// link to next node
public Link next;

(continues on next page)

196 Chapter 33. Linked Lists

CSCI 132 Basic Data Structures

(continued from previous page)

// constructor
public Link (String city, int population)
{

this.city = city;

this.population = population;

// display the link
public void displayLink ()
{
System.out.print ("{" + city + ", " + population + "} ");

class LinkedList

{

// first is a reference / "address" of the first 1link
private Link first;

// constructor
public LinkedList ()
{

first = null;

//Check if the list is empty
public boolean isEmpty ()
{

return (first == null);

// insert at the front

// of the list (front[left] —-—- to —--> back[right])
public void insertFirst (String city, int population)
{

// create a new link
Link newLink = new Link (city, population);

// the new link is to the left or in front of first
// the new link will make first in the second spot
// so newLink.next has to point to the address first
newLink.next = first;

// now that the newLink.next is looking at the seond spot
// or the next spot, first can have the address of the newLink
first = newlLink;

//This function displays the linked 1list
public void displayList ()

(continues on next page)

33.4. Singly Linked List 197

CSCI 132 Basic Data Structures

(continued from previous page)

System.out.print ("\nList\n (first --> last): ");

//temp variable to hold first

Link current = first;
while (current != null)
{

current.displayLink();

// move to the next 1ink
current = current.next;

System.out.println();

} //end of display list

public boolean findCity (String city)

{

boolean found = false;

Link current = first;
// iterate through the loop
while (current != null)
{
// check if current city matches search city
// set found to true and break out of the loop
if (current.city.equals(city))
{
found = true;
break;

current = current.next;

return found;

// delete first
public Link deleteFirst ()

{

// temp variable to hold first address
// temp is pointing to an address
Link temp = first;

if (!isEmpty ())

{
// set variable to second spot
first = first.next;

// return a link to object
// 1in case calling program wants

(continues on next page)

198

Chapter 33. Linked Lists

CSCI 132 Basic Data Structures

(continued from previous page)

// to retreive the deleted data
return temp;

public void deleteCity (String city)

{

// assumes the data does not have duplicates

//need to check if the city was found
boolean found = false;

Link current = first;
Link prev = first;
Link temp;

// check if city is in the first node
if (first.city.equals(city))

{
temp = first;
first = first.next;
temp = null;
System.out.println("City was deleted");
return;
}

// start at the beginning of 1list
while (current != null)

{

// check if the current city matches the search city
if (current.city.equals(city))

{

found = true;

// break out of the while statement
break;

// set the prev variable
prev = current;

// move to the next node
current = current.next;

// check if the while statment made it to

// the end of the loop

if (found == false)

{
System.out.println("\n*** City not found - Nothing deleted");
return;

// delete process
prev.next = current.next;

current = null;

(continues on next page)

33.4. Singly Linked List

199

CSCI 132 Basic Data Structures

(continued from previous page)

System.out.println ("\n*** City was successfully delete");

public void deletelist ()

{
while

{

(first != null)

deleteFirst ();

// city is the location of where the
// will be inserted (after)

new data

// newCity and newPop are the new city and new population

public void insertAfter (String city,
{
boolean found =
Link current =

false;
first;

//create a new 1link
Link NewLink = new Link (newCity,

try
{
// iterate through loop
while (current != null)
{
// break out of the loop
// stops the loop at the
// sets found to true

String newCity, int newPop)

newPop) ;

if found
found city

if (current.city.equals(city))
{

found = true;

break;

// move to next node
current = current.next;

// insert process
NewLink.next = current.next;

current .next = NewLink;
} catch (Exception e)
{

System.out.println("**Error**\n" + e.getMessage () + "\n***\n");
}

} // end of class

public class SinglyLinkedLists_Rev3

(continues on next page)

200

Chapter 33. Linked Lists

CSCI 132 Basic Data Structures

(continued from previous page)

public static void main(String[] args)

{
LinkedList thelist = new LinkedList ();

thelList.insertFirst ("Kali", 32000);
thelList.insertFirst ("Whitefish", 7700);
thelList.insertFirst ("Polson”, 20000);
thelist.insertFirst ("Chicago", 13000000);
thelList.insertFirst ("Convoy", 500);

thelist.displayList ();
System.out.println("Find Kali : " + theList.findCity("Kali"));

// ternary operator

String output = (thelist.findCity ("Polson") == true)
? "City Found" : "City Not Found";

System.out .println("Polson: " + output);

output = (thelist.findCity ("Somers") == true)
? "City Found" : "City Not Found";
System.out.println("Somers: " + output);

thelList.deleteFirst ();
thelist.displayList ();

thelList.deleteCity ("Chicago");
thelist.displayList ();

thelList.insertAfter ("Polson", "New York", 10000000);
thelist.displayList ();

thelList.deletelList ();
thelist.displayList ();

Singly Linked List - Nested Link Class

* Single Link List

* SingleLinkList_nested_Rev3

* Programmer: James Goudy
*

*/

package singlylinkedlists_nested_rev3;

class LinkedList

{

(continues on next page)

33.4. Singly Linked List 201

CSCI 132 Basic Data Structures

(continued from previous page)

class Link

{

// Data goes here
public String city = "";
public int population = 0;

// 1link to next node
public Link next;

// constructor
public Link (String city, int population)
{

this.city = city;

this.population = population;

// display the link
public void displayLink ()
{
System.out.print ("{" + city + ", " + population + "} ");

// first is a reference / "address" of the first 1link
private Link first;

// constructor
public LinkedList ()
{

first = null;

//Check if the list is empty
public boolean isEmpty ()
{

return (first == null);

// insert at the front
// of the list (front[left] —-- to —--> back[right])
public void insertFirst (String city, int population)

{

// create a new link
Link newLink = new Link (city, population);

// the new link is to the left or in front of first
// the new link will make first in the second spot
// so newLink.next has to point to the address first
newLink.next = first;

// now that the newLink.next is looking at the seond spot
// or the next spot, first can have the address of the newLink

(continues on next page)

202

Chapter 33. Linked Lists

CSCI 132 Basic Data Structures

(continued from previous page)

first = newlLink;

//This function displays the linked 1list
public void displayList ()

{
System.out.print ("\nList\n (first --> last): ");

//temp variable to hold first
Link current = first;

while (current != null)

{
current.displayLink();

// move to the next 1ink
current = current.next;

System.out.println();
} //end of display list

public boolean findCity (String city)
{

boolean found = false;

Link current = first;
// iterate through the loop
while (current != null)

{

// check if current city matches search city
// set found to true and break out of the loop
if (current.city.equals(city))

{
found = true;
break;

current = current.next;

return found;

// delete first
public Link deleteFirst ()

{

// temp variable to hold first address
// temp is pointing to an address
Link temp = first;

if (!isEmpty ())
{

(continues on next page)

33.4. Singly Linked List

203

CSCI 132 Basic Data Structures

(continued from previous page)

// set variable to second spot
first = first.next;

// return a link to object

// 1in case calling program wants
// to retreive the deleted data
return temp;

public void deleteCity (String city)
{

// assumes the data does not have duplicates

//need to check if the city was found
boolean found = false;

Link current = first;
Link prev = first;
Link temp;

// check if city is in the first node
if (first.city.equals(city))

{
temp = first;
first = first.next;
temp = null;
System.out.println("City was deleted");
return;
}
// start at the beginning of 1list
while (current != null)
{

// check if the current city matches the search city
if (current.city.equals(city))

{

found = true;

// break out of the while statement
break;

// set the prev variable
prev = current;

// move to the next node
current = current.next;

// check if the while statment made it to

// the end of the loop

if (found == false)

{
System.out.println("\n*** City not found - Nothing deleted");
return;

(continues on next page)

204 Chapter 33. Linked Lists

CSCI 132 Basic Data Structures

(continued from previous page)

// delete process
prev.next = current.next;

current = null;
System.out.println ("\n*** City was successfully delete");

public void deletelist ()
{
while (first != null)
{
deleteFirst ();

// city is the location of where the new data
// will be inserted (after)
// newCity and newPop are the new city and new population
public void insertAfter (String city, String newCity, int newPop)
{

boolean found = false;

Link current = first;

//create a new 1link
Link NewLink = new Link (newCity, newPop);

try
{
// iterate through loop
while (current != null)
{
// break out of the loop if found
// stops the loop at the found city
// sets found to true
if (current.city.equals(city))
{
found = true;
break;

// move to next node

current = current.next;
}
// insert process
NewLink.next = current.next;
current .next = NewLink;

} catch (Exception e)

{

System.out.println("**Error**\n" + e.getMessage () + "\n***\n");

(continues on next page)

33.4. Singly Linked List 205

CSCI 132 Basic Data Structures

(continued from previous page)

Y /e

public class Singlylinkedlists_nested_rev3
{

public static void main (String][]

{

args)

LinkedList thelist = new LinkedList ();

// how to create a Link from a nested class

// note that the new link has to be created from the
// outer link ('theList!')
LinkedList.Link aLink = thelList.new Link ("Detroit",
// display the created link
System.out.println("Created Inner Link");
alink.displayLink () ;

System.out.println ("\n\n");

thelList.insertFirst ("Kali", 32000);
thelList.insertFirst ("Whitefish", 7700);
thelList.insertFirst ("Polson", 20000);
thelList.insertFirst ("Chicago", 13000000);
thelist.insertFirst ("Convoy", 500);
theList.displayList ();

System.out.println("Find Kali

// ternary operator

String output = (thelList.findCity("Polson") == true)

? "City Found" "City Not Found";
System.out .println("Polson: " + output);
output = (thelist.findCity ("Somers") == true)

? "City Found" "City Not Found";
System.out.println("Somers: " + output);
thelList.deleteFirst ();
thelist.displayList ();
thelList.deleteCity ("Chicago");
thelList.displayList ();
thelList.insertAfter ("Polson", "New York", 10000000);
thelist.displayList ();

thelList.
thelList.

deletelList ();
displayList();

2000000) ;

" + thelist.findCity ("Kali"));

(continues on next page)

206

Chapter 33. Linked Lists

CSCI 132 Basic Data Structures

(continued from previous page)

End Of Topic

33.5 Doubly Linked List

33.5.1 Key Ideas

¢ The doubly linked list allows the list to be traversed in both directions; forwards and backwards

33.5.2 Lecture Code

J*
* Programmer: James Goudy
* Project: Doubly Linked List
*/

class Link {

Link first = null;
Link last = null;

// data
String city = null;

// 1link navigation
Link next = null;
Link prev = null;

// constructor

Link (String city) A
this.city = city;
this.next = null;
this.prev = null;

public void displayNode () {
System.out.print (city + " ");
3
} // end of link

class Doubly {

Link first = null;
Link last = null;

(continues on next page)

33.5. Doubly Linked List 207

CSCI 132 Basic Data Structures

(continued from previous page)

// constructor
public Doubly () {

first = null;
last = null;

// add link at the beginning of the 1list
public boolean addFirst (String city) {
Link newLink = new Link (city);

if (first == null) {
// 1if list is empty
first = newLink;
last = newLink;

} else {
newLink.next = first;
first.prev = newlLink;
first = newLink;

}

return true;

// add 1link to the end of the 1list
public boolean addLast (String city) {

Link newLink = new Link (city);

if (first == null) {
// 1if list is empty
first = newLink;
last = newLink;

} else {
newLink.prev = last;
last.next = newlLink;
last = newLink;

return true;

public boolean findCity (String citySearch) {
if (first == null) {

// 1if list is empty
return false;

} else {
Link current = first;

while (current != null) {
if (current.city.equals(citySearch)) {
return true;
I

current = current.next;

(continues on next page)

208 Chapter 33. Linked Lists

CSCI 132 Basic Data Structures

(continued from previous page)

return false;

public boolean insertAfter (String citySearch, String insertCity)
Link newLink = new Link (insertCity);
if (first == null) {
// list is empty — add the link
first = newLink;
last = newLink;
// NOTE: there is an option not to insert

// a link then the code above would be replaced
// with return false

} else {
Link current = first;
while (current != null) {
if (current.city.equals(citySearch)) {
// check if last link
if (current.next == null) {
// check if last 1link
current.next = newLink;
newlLink.prev = current;
last = newLink;
} else {
newLink.next = current.next;
newlLink.prev = current;
current.next.prev = newLink;
current .next = newLink;
}
return true;
}
current = current.next;
}
}

return false;

public boolean insertBefore (String citySearch, String insertCity)

Link newLink = new Link (insertCity);

{

(continues on next page)

33.5. Doubly Linked List

209

CSCI 132 Basic Data Structures

(continued from previous page)

if (first == null) {

// 1list is empty - add the 1link
first = newLink;
last = newlLink;

// NOTE: there is an option not to insert
// a link then the code above would be replaced

// with return false

} else {
Link current = first;
while (current != null) {

if (current.city.equals(citySearch))

// check for first 1link

if (current.prev == null) {
// check if last link
current.prev = newlLink;
newLink.next = current;
first newLink;

} else {
newlLink.next = current;

newLink.prev current.prev;

current.prev.next = newLink;
current.prev = newlLink;

return true;

}

current = current.next;

return false;

public boolean deleteCity (String citySearch) {

if (first == null) {
return false;

} else {
Link current = first;
while (current != null) {

if (current.city.equals(citySearch))

if (current.prev == null) {
// first node
current.next.prev = null;
first = current.next;

current = null;

(continues on next page)

210

Chapter 33. Linked Lists

CSCI 132 Basic Data Structures

(continued from previous page)

return true;

} else if (current.next == null) {
// last node
current.prev.next = null;
last = current;

current = null;
return true;

} else {
// a center node
current.prev.next = current.next;

current.next.prev
current = null;

current.prev;

return true;
}

current = current.next;

return false;
}
} //end of function

public void displayList () {
Link current = first;

System.out.println("");

while (current != null) {
current.displayNode () ;
current = current.next;
}

System.out.println("");

public class DS_DoublyLinkedList ({
static Doubly dl = new Doubly();
public static void citySearch(String searchCity) {

// note that findCity returns a boolean
// so it can be used in an "if" statement
if (dl.findCity(searchCity)) {
System.out.println("\n" + searchCity + " is in list");
} else {
System.out.println("\n" + searchCity + " not found");

public static void deleteCity(String searchCity) {

// note that findCity returns a boolean
// so it can be used in an "if" statement

(continues on next page)

33.5. Doubly Linked List 211

CSCI 132 Basic Data Structures

(continued from previous page)

if (dl.deleteCity(searchCity)) {
System.out.println(searchCity + " was deleted");

} else {
System.out.println(searchCity + " was NOT deleted");

public static void main(String[] args) {

String searchCity
String insertCity = "";

LU LIS
’

// insert data at front of 1list
dl.addFirst ("Kali");
dl.addFirst ("Polson");
dl.addFirst ("Missoula");
dl.addFirst ("Whitefish");

// insert data at end of 1list
dl.addLast ("Chicago");
dl.addLast ("Denver");
dl.addLast ("Sandiego");
dl.displayList();

System.out.println("\n-————- Find Examples—————- \n");

searchCity = "Chicago";
citySearch (searchCity);

searchCity = "Bozeman";
citySearch (searchCity);

System.out.println ("\n-————-— Delete Examples—————-— \n");

searchCity = "Polson";
deleteCity (searchCity);

searchCity = "Bozeman";
deleteCity (searchCity);

searchCity = "Sandiego";
deleteCity (searchCity);

searchCity = "Whitefish";
deleteCity (searchCity);

dl.displayList ();

System.out.println ("\n-————— Insert Examples—————-— \n");
searchCity = "Missoula";
insertCity = "Dayton";

dl.insertAfter (searchCity, insertCity);

(continues on next page)

212

Chapter 33. Linked Lists

CSCI 132 Basic Data Structures

(continued from previous page)

searchCity = "Denver";
insertCity = "Boulder";
dl.insertAfter (searchCity,
dl.displayList();
searchCity = "Chicago";
insertCity = "Springfield";
dl.insertBefore (searchCity,
searchCity = "Missoula";
insertCity = "Libby";
dl.insertBefore (searchCity,

dl.displayList ();

System.out.println ("\nbye");

* OUTPUT *

insertCity);

insertCity);

insertCity);

* Whitefish Missoula Polson Kali Chicago Denver Sandiego *

o Find Examples—————-—

* Chicago is in 1list

* Bozeman not found

* Polson was deleted

* Bozeman was NOT deleted
* Sandiego was deleted

* Whitefish was deleted

* Missoula Kali Chicago Denver *
Insert Examples—————-—

* Missoula Dayton Kali Chicago Denver Boulder

*

* Libby Missoula Dayton Kali Springfield Chicago Denver Boulder *

* bye

*/

End Of Topic

33.5. Doubly Linked List

213

CSCI 132 Basic Data Structures

33.6 Doubly Linked List - Links as Sub Class

33.6.1 Key Ideas

» The doubly linked list allows the list to be traversed in both directions; forwards and backwards

Note: Not all languages support subclasses.

33.6.2 Lecture Code

/*
* Programmer: James Goudy
* Project: Doubly Linked List written
* with Links / Nodes as SubClass
*/

class Doubly {

Link first = null;
Link last = null;

/) mmmm e
// sub class - Link / Nodes
// NOTE: this can be a separate class as well

class Link {

Link first = null;
Link last = null;

// data
String city = null;

// 1link navigation
Link next = null;
Link prev = null;

// constructor

Link (String city) A
this.city = city;
this.next = null;
this.prev = null;

public void displayNode () {
System.out.print (city + " ");
}
} // end of link
/) e e

// constructor
public Doubly () {

(continues on next page)

214 Chapter 33. Linked Lists

CSCI 132 Basic Data Structures

(continued from previous page)

first = null;
last = null;

// add link at the beginning of the 1list
public boolean addFirst (String city) {
Link newLink = new Link (city);

if (first == null) {
// if list is empty
first = newLink;
last = newLink;

} else {
newLink.next = first;
first.prev = newlLink;
first = newLink;

}

return true;

// add 1link to the end of the list
public boolean addLast (String city) {

Link newLink = new Link (city);
if (first == null) {
// if list is empty
first = newLink;
last = newLink;
} else {
newLink.prev = last;
last.next = newlLink;
last = newLink;
}

return true;

public boolean findCity (String citySearch) {
if (first == null) {

// if list is empty
return false;

} else {
Link current = first;
while (current != null) {

if (current.city.equals(citySearch))
return true;
}

current

current.next;

return false;

{

(continues on next page)

33.6. Doubly Linked List - Links as Sub Class

215

CSCI 132 Basic Data Structures

(continued from previous page)

public boolean insertAfter (String citySearch, String insertCity) |
Link newLink = new Link (insertCity);
if (first == null) {
// list is empty — add the link
first = newLink;
last = newLink;
// NOTE: there is an option not to insert

// a link then the code above would be replaced
// with return false

} else {
Link current = first;
while (current != null) {
if (current.city.equals(citySearch)) {
// check if last link
if (current.next == null) {
// check if last 1link
current .next = newLink;
newLink.prev = current;
last = newLink;
} else {
newLink.next = current.next;
newlLink.prev = current;
current.next.prev = newlLink;
current.next = newLink;
}
return true;
}
current = current.next;
}
}

return false;

public boolean insertBefore(String citySearch, String insertCity) {
Link newLink = new Link (insertCity);

if (first == null) {

(continues on next page)

216 Chapter 33. Linked Lists

CSCI 132 Basic Data Structures

(continued from previous page)

// list is empty — add the link
first = newLink;
last = newLink;

// NOTE: there is an option not to insert

// a link then the code above would be replaced

// with return false

} else {
Link current = first;
while (current != null) {

if (current.city.equals(citySearch))

// check for first link

if (current.prev == null) {
// check if last 1link
current.prev = newlLink;
newlLink.next = current;
first = newlLink;

} else {

newLink.next
newlLink.prev

= current;

current.prev;

current.prev.next = newLink;
current.prev = newlLink;

return true;

}

current = current.next;

return false;

public boolean deleteCity (String citySearch) {

if (first == null) {
return false;

} else {
Link current = first;
while (current != null) {

if (current.city.equals(citySearch))

if (current.prev == null) {
// first node
current.next.prev = null;
first = current.next;
current = null;

return true;

(continues on next page)

33.6. Doubly Linked List - Links as Sub Class

217

CSCI 132 Basic Data Structures

(continued from previous page)

} else if (current.next == null) {
// last node
current.prev.next = null;
last = current;
current = null;
return true;

} else {
// a center node
current.prev.next = current.next;
current.next.prev = current.prev;
current = null;

return true;

}

current = current.next;

return false;
}
} //end of function

public void displayList () {
Link current = first;

System.out.println("");

while (current != null) {
current.displayNode () ;
current = current.next;

}

System.out.println("");

public void displayListBackwards () {
Link current = last;

System.out.println("");

while (current != null) {
current.displayNode () ;
current = current.prev;

}

System.out.println("");

public class J2_SubClass {
static Doubly dl = new Doubly();
public static void citySearch(String searchCity) {
// note that findCity returns a boolean
// so it can be used in an "if" statement

if (dl.findCity(searchCity)) |
System.out.println("\n" + searchCity + " is in list");

(continues on next page)

218 Chapter 33. Linked Lists

CSCI 132 Basic Data Structures

(continued from previous page)

} else {
System.out.println("\n" + searchCity + " not found");

public static void deleteCity(String searchCity) {

// note that findCity returns a boolean
// so it can be used in an "if" statement
if (dl.deleteCity(searchCity)) |
System.out .println(searchCity + " was deleted");
} else {
System.out.println(searchCity + " was NOT deleted");

public static void main (String[] args) {

String searchCity = "";
String insertCity = "";

// insert data at front of 1list
dl.addFirst ("Kali");
dl.addFirst ("Polson");
dl.addFirst ("Missoula");
dl.addFirst ("Whitefish");

// insert data at end of list
dl.addLast ("Chicago");
dl.addLast ("Denver");
dl.addLast ("Sandiego");
dl.displayList();

System.out.println ("\n-————- Find Examples—————- \n");

searchCity = "Chicago";
citySearch (searchCity);

searchCity = "Bozeman";
citySearch (searchCity);

System.out.println ("\n-————— Delete Examples—————-— \n");

searchCity = "Polson";
deleteCity (searchCity);

searchCity = "Bozeman";
deleteCity (searchCity);

searchCity = "Sandiego";
deleteCity (searchCity);

searchCity = "Whitefish";

(continues on next page)

33.6. Doubly Linked List - Links as Sub Class 219

CSCI 132 Basic Data Structures

(continued from previous page)

deleteCity (searchCity);

dl.displayList ();

System.out.println ("\n-———-— Insert Examples———-——— \n");
searchCity = "Missoula";
insertCity = "Dayton";

dl.insertAfter (searchCity, insertCity);
searchCity = "Denver";

insertCity = "Boulder";

dl.insertAfter (searchCity, insertCity);
dl.displayList();

searchCity = "Chicago";

insertCity = "Springfield";
dl.insertBefore (searchCity, insertCity);
searchCity = "Missoula";

insertCity = "Libby";

dl.insertBefore (searchCity, insertCity);

dl.displayList();

System.out.println ("\nbye");

J*
OUTPUT

Whitefish Missoula Polson Kali Chicago Denver Sandiego

Chicago is in 1list

Bozeman not found

Polson was deleted
Bozeman was NOT deleted
Sandiego was deleted
Whitefish was deleted

Missoula Kali Chicago Denver

Missoula Dayton Kali Chicago Denver Boulder

(continues on next page)

220 Chapter 33. Linked Lists

CSCI 132 Basic Data Structures

(continued from previous page)

Libby Missoula Dayton Kali Springfield Chicago Denver Boulder
bye

*/

End Of Topic

33.7 Circular Linked List - Links as Sub Class

33.7.1 Key ldeas

» The doubly linked list allows the list to be traversed in both directions; forwards and backwards

* In a circular doubly-linked list the last node (next) points to the first. The first node (previous) points to the last
node.

¢ The doubly linked list allows the list to be traversed in both directions; forwards and backwards

Note: Not all languages support subclasses.

33.7. Circular Linked List - Links as Sub Class 221

CSCI 132 Basic Data Structures

33.7.2 Lecture Code

package com.mycompany.linkedlistcircular;

/*
* Programmer: James Goudy

* Project Circular LinkedList
*

* NOTE: last link is referenced as first.prev
*/

class CircularLinkedList {
Link first = new Link("");

/) mmmm e

// sub class - Link / Nodes

// NOTE: this can be a separate class as well
class Link {

Link first = null;

// data
String city = null;

// 1link navigation
Link next = null;
Link prev null;

// constructor

Link (String city) {
this.city = city;
this.next = null;
this.prev = null;

public void displayNode () {
System.out.print (city + " ");
}
} // end of link
/) e

// constructor
public CircularLinkedList () A

first = null;
// add link at the beginning of the 1list
public boolean addFirst (String city) {

Link newLink = new Link (city);

if (first == null) {
// empty 1list
newLink.next = newLink;

newLink.prev = newLink;

(continues on next page)

222 Chapter 33. Linked Lists

CSCI 132 Basic Data Structures

(continued from previous page)

first = newlLink;

} else {

// connect the newLink references

newLink.next = first;
newLink.prev = first.prev;
first.prev = newlLink;

// move first to the new link
first = newLink;

// point the last link to the new first
first.prev.next = first;

return true;

// add link to the end of the list
public boolean addLast (String city) {

Link newLink = new Link (city);

if (first == null) {
//1ist 1is empty
first = newlLink;

} else {
// set new link references
newLink.next = first;
newLink.prev = first.prev;

// last link is (first.prev)
first.prev.next = newLink;

first.prev = newlLink;

return true;

public boolean findCity (String citySearch) {
if (first == null) {
// 1if list is empty
return false;
} else {

Link current = first;

do {

(continues on next page)

33.7. Circular Linked List - Links as Sub Class

223

CSCI 132 Basic Data Structures

(continued from previous page)

if (current.city.equals(citySearch)) {

return true;

}

current = current.next;

} while (current != first);

return false;

public boolean insertAfter (String citySearch, String insertCity)

Link newLink = new Link (insertCity);

if (first == null) {

// 1list 1s empty - add the 1link

first = newLink;
// NOTE: there is an option not to insert
// a link then the code above would be replaced
// with return false
} else {
Link current = first;
while (current != null) {
if (current.city.equals(citySearch)) {
// check if last link
if (current.next == first.prev) {
// check if last link
current .next = newLink;
newlLink.prev = current;
first.prev = newlLink;
} else {
newLink.next = current.next;
newlLink.prev = current;
current.next.prev = newlLink;
current.next = newLink;
}
return true;
}
current = current.next;
}

return false;

(continues on next page)

224

Chapter 33. Linked Lists

CSCI 132 Basic Data Structures

(continued from previous page)

public boolean insertBefore(String citySearch, String insertCity) {
Link newLink = new Link (insertCity);
if (first == null) {

// list is empty — add the link
first = newLink;

// NOTE: there is an option not to insert
// a link then the code above would be replaced
// with return false

} else {
Link current = first;
while (current != null) {
if (current.city.equals(citySearch)) {
// check for first 1link
if (current.prev == null) {
// check if last link
current.prev = newlLink;
newLink.next = current;
first = newLink;
} else {
newlLink.next = current;
newLink.prev = current.prev;
current.prev.next = newLink;
current.prev = newlLink;
}
return true;
}
current = current.next;

return false;

public boolean deleteCity (String citySearch) {

if (first == null) {
return false;
} else {
Link current = first;
do {
if (current.city.equals(citySearch)) {
if (current.prev == null) {

// first node

(continues on next page)

33.7. Circular Linked List - Links as Sub Class 225

CSCI 132 Basic Data Structures

(continued from previous page)

current.next.prev = null;
first = current.next;
current = null;

return true;

} else if (current.next == null) {
// last node
current.prev.next = null;
first.prev = current;

current = null;
return true;

} else {
// a center node
current.prev.next = current.next;
current.next.prev = current.prev;

current = null;

return true;

current = current.next;
} while (current != first);

return false;

}
} //end of function

public void displayList () {
Link current = first;

System.out.println("\n** Display List Forward To Back **");

do {
current.displayNode () ;
current = current.next;
if (current == first) {
System.out.println("\n-—————————- \n");
return;

} while (current.next != null);

} // end of method

public void displayList (String startCity) {

Link current = first;
Link start = null;

System.out.println("\n ** Display List Forward To Back"
+ " starting at " + startCity + "**");

// find the city in the 1list
do {
if (current.city.equals(startCity)) {
break;

(continues on next page)

226 Chapter 33. Linked Lists

CSCI 132 Basic Data Structures

(continued from previous page)

current = current.next;
if (current == first) {
System.out.println("City Not Found");
return;
}
} while (current.next != null);
System.out.println("");
start = current;
do {
current.displayNode () ;
current = current.next;
if (current == start) {
System.out.println("\n-——————————~ \n");
return;
}
} while (current.next != null);

} // end of method
public void displayListReverse () {

Link current = first.prev;

System.out.println("\n** Display List in Reverse **\n");

do {
current.displayNode () ;
current = current.prev;
if (current == first.prev) {
System.out.println("\n-——————————- \n");
return;
}
} while (current.prev != null);

} // end of method

public void displayListReverse (String startCity) {

Link current = first;
Link start = null;

System.out.println("\n ** Display list in reverse"
+ " starting at " + startCity + "**");

// find the city in the 1list

do {
if (current.city.equals(startCity)) {

break;

(continues on next page)

33.7. Circular Linked List - Links as Sub Class

227

CSCI 132 Basic Data Structures

(continued from previous page)

current = current.next;

if (current == first) {
System.out.println("City Not Found");
return;

} while (current.next != null);

System.out.println("");

start = current;
do {
current.displayNode () ;
current = current.prev;
if (current == start) {
System.out.println("\n-——————————~ \n");
return;
}
} while (current.prev != null);

} // end of method

} // end of class

public class DS_LinkedListCircular ({
static CircularLinkedList dl = new CircularLinkedList ();
public static void citySearch(String searchCity) {

// note that findCity returns a boolean
// so it can be used in an "if" statement
if (dl.findCity (searchCity)) |
System.out.println("\n" + searchCity + " is in list");
} else {
System.out.println("\n" + searchCity + " not found");

public static void deleteCity(String searchCity) {

// note that findCity returns a boolean

// so it can be used in an "if" statement

if (dl.deleteCity(searchCity)) |
System.out.println(searchCity + " was deleted");

} else {
System.out.println(searchCity + " was NOT deleted");

(continues on next page)

228 Chapter 33. Linked Lists

CSCI 132 Basic Data Structures

(continued from previous page)

public static void main(String[] args) {
String searchCity

String insertCity =

ww .,
’

ww .,
4

// insert data at front of 1ist
dl.addFirst ("Kali");
dl.addFirst ("Polson");
dl.addFirst ("Missoula");
dl.addFirst ("Whitefish");
dl.addFirst ("Plains");

// insert data at end of 1list

dl.
dl.
dl.

addLast ("Chicago");
addLast ("Denver");
addLast ("Sandiego");

dl.
dl.

displayList();
displayListReverse();

dl.
dl.

displayList ("Missoula");
displayList ("Wolfcreek");

dl.
dl.

displayListReverse();
displayListReverse ("Missoula");

System.out.println("\n

searchCity
citySearch (searchCity);

"Missoula";

searchCity = "Bozeman";
citySearch (searchCity);

System.out.println ("\n

searchCity = "Polson";
deleteCity (searchCity);

searchCity "Bozeman";

deleteCity (searchCity);

searchCity "Sandiego";
deleteCity (searchCity);

searchCity = "Whitefish";
deleteCity (searchCity);

dl.displayList ();

System.out.println("\n

searchCity "Missoula";
insertCity "Dayton";
dl.insertAfter (searchCity,

insertCity);

(continues on next page)

33.7. Circular Linked List - Links as Sub Class

229

CSCI 132 Basic Data Structures

(continued from previous page)

searchCity "Denver";
insertCity "Boulder";
dl.insertAfter (searchCity,

dl.displayList();
System.out.println ("\n—————

searchCity = "Chicago";
insertCity = "Springfield";
dl.insertBefore (searchCity,

searchCity "Missoula";
insertCity "Libby";
dl.insertBefore (searchCity,

dl.displayList();
System.out.println ("\nbye");

}
Vi
* output
*
** Display List Forward To Back **
* Plains Whitefish Missoula Polson

** Display List in Reverse **

*

* Sandiego
*
*

*

** Display
*

* Missoula
*
*

*

insertCity);

insertCity);

insertCity);

Kali Chicago Denver Sandiego

Denver Chicago Kali Polson Missoula Whitefish Plains

List Forward To Back starting at Missoula**

Polson Kali Chicago Denver Sandiego Plains Whitefish

** Display
* City Not

*

** Display
*

* Sandiego

K e

*

*

** Display
*

* Missoula

e

*

List Forward To Back starting at Wolfcreek**
Found

List in Reverse **
Denver Chicago Kali Polson Missoula Whitefish Plains
list in reverse starting at Missoula**

Whitefish Plains Sandiego Denver Chicago Kali Polson

(continues on next page)

230

Chapter 33. Linked Lists

CSCI 132 Basic Data Structures

(continued from previous page)

* Missoula is in 1ist

* Bozeman not found

* Polson was deleted

* Bozeman was NOT deleted
* Sandiego was deleted

* Whitefish was deleted

** Display List Forward To Back **
* Plains Missoula Kali Chicago Denver

** Display List Forward To Back **
* Plains Missoula Dayton Kali Chicago Denver Boulder

** Display List Forward To Back **

* Plains Libby Missoula Dayton Kali Springfield Chicago Denver Boulder

* bye

*/

End Of Topic

33.8 Reading Datafile Into Linked List

33.8.1 Lecture Code

/*
Programmer: James Goudy
Project: Reading a csv file into a linked 1list

*/

(continues on next page)

33.8. Reading Datafile Into Linked List 231

CSCI 132 Basic Data Structures

(continued from previous page)

import java.io.BufferedReader;

import java.io.FileNotFoundException;
import java.io.FileReader;

import java.util.logging.Level;
import java.util.logging.Logger;

class Link {

Link first = null;
Link last = null;

// data

String id = null;
String firstname;
String lastname;
String pet;

// 1link navigation
Link next = null;
Link prev = null;

// constructor
public Link (String id, String firstname, String lastname, String pet) {
this.id = id;
this.firstname = firstname;
this.lastname = lastname;
this.pet = pet;

public void displayNode () {
System.out.println("{"+ firstname + " " + lastname + " "
+pet+ n n + id +ll } n) ’.
}
} // end of link

class Doubly {

Link first = null;
Link last = null;

// constructor
public Doubly () {

first = null;
last = null;

// add link at the beginning of the 1list
public boolean addFirst (String id,String firstname,
String lastname, String pet) {
Link newLink = new Link(id, firstname, lastname, pet);

(continues on next page)

232 Chapter 33. Linked Lists

CSCI 132 Basic Data Structures

(continued from previous page)

if (first == null) {
// 1if list is empty
first = newLink;
last = newlLink;

} else {
newLink.next = first;
first.prev = newlLink;
first = newlLink;

t

return true;

// add link to the end of the list
public boolean addLast (String id,String firstname,
String lastname, String pet) {

Link newLink = new Link(id, firstname, lastname,
if (first == null) {
// 1if list is empty
first = newLink;
last = newLink;
} else {
newlLink.prev = last;
last.next = newlLink;
last = newLink;
}

return true;

public boolean findId(String searchID) {
if (first == null) {

// if 1list is empty
return false;

} else {
Link current = first;

while (current != null) {
if (current.id.equals(searchID)) {
return true;
}

current = current.next;

return false;

String lastname, String pet) {
Link newLink = new Link(id, firstname, lastname,

public boolean insertAfter (String searchId, String id,String firstname,

pet);

pet) ;

(continues on next page)

33.8. Reading Datafile Into Linked List

233

CSCI 132 Basic Data Structures

(continued from previous page)

if (first == null) {

// 1list is empty - add the 1link
first = newlLink;
last = newlLink;

// NOTE: there is an option not to insert
// a link then the code above would be replaced
// with return false

} else {
Link current = first;
while (current != null) {
if (current.id.equals(searchId)) {
// check if last 1link
if (current.next == null) {
// check if last link
current.next = newLink;
newlLink.prev = current;
last = newLink;
} else {
newLink.next = current.next;
newLink.prev = current;
current.next.prev = newLink;
current.next = newLink;
}
return true;
}
current = current.next;
}
}

return false;

public boolean insertBefore (String searchId, String id,String firstname,
String lastname, String pet) {

Link newLink = new Link(id, firstname, lastname, pet);
if (first == null) {

// list 1s empty - add the 1link

first = newlLink;

last = newLink;

// NOTE: there is an option not to insert

// a link then the code above would be replaced
// with return false

(continues on next page)

234 Chapter 33. Linked Lists

CSCI 132 Basic Data Structures

(continued from previous page)

} else {
Link current = first;
while (current != null) {
if (current.id.equals (searchId)) {
// check for first 1link
if (current.prev == null) {
// check if last 1link
current.prev = newlLink;
newLink.next = current;
first = newLink;
} else {
newlLink.next = current;
newLink.prev = current.prev;
current.prev.next = newLink;
current.prev = newlLink;
}
return true;
}
current = current.next;

return false;

public boolean deleteId(String searchID) {

if (first == null) {
return false;

} else {
Link current = first;

while (current != null) {
if (current.id.equals (searchID)) {

if (current.prev == null) {
// first node
current.next.prev = null;
first = current.next;
current = null;
return true;

} else if (current.next == null) {
// last node
current.prev.next = null;
last = current;
current = null;
return true;

} else {

// a center node

(continues on next page)

33.8. Reading Datafile Into Linked List 235

CSCI 132 Basic Data Structures

(continued from previous page)

current.prev.next = current.next;
current.next.prev = current.prev;
current = null;

return true;
}

current = current.next;

return false;
}
} //end of function

public void displayList () {
Link current = first;

System.out.println("");

while (current != null) {
current.displayNode () ;
current = current.next;
}

System.out.println("");

public class DS_ReadDatalIntoLinkedList {
static Doubly dl = new Doubly();
public static void idSearch(String searchId) {

// note that findCity returns a boolean
// so it can be used in an "if" statement
if (dl.findId(searchId)) {

System.out.println("\n" + searchId + " is in list");
} else {

System.out.println("\n" + searchId + " not found");

public static void deletelID(String searchId) {

// note that findCity returns a boolean

// so it can be used in an "if" statement

if (dl.deleteld(searchId)) {
System.out.println(searchId + " was deleted");

} else {
System.out.println(searchId + " was NOT deleted");

(continues on next page)

236

Chapter 33. Linked Lists

CSCI 132 Basic Data Structures

(continued from previous page)

public static boolean addData (String filePath)
{

BufferedReader br;

FileReader fr;

String inputLine;

try {
// create buffered reader

br = new BufferedReader (new FileReader (filePath));

// skip the header line
br.readLine () ;

while ((inputline = br.readLine()) != null)

{

String[] inputArray = inputLine.split(",");

dl.addLast (inputArray

[0,
inputArray|

[

[

4
inputArray

0
1]
2]
inputArray|[3]

)i

br.close();

} catch (FileNotFoundException ex) {
System.out .println (ex.getMessage ());
return false;

}catch (Exception e)

{
System.out.println(e.getMessage());
return false;

return true;

public static void main(String[] args) {

nw .,
’

String searchID =
String insertCity = "";

String filePath = "c:\\z\\peoplePets.csv";
addData (filePath);

dl.displayList();

System.out.println ("\n-————— Find Examples——-—

searchID = "10";
idSearch (searchilD);

searchID = "AAA";

(continues on next page)

33.8. Reading Datafile Into Linked List

237

CSCI 132 Basic Data Structures

(continued from previous page)

idSearch (searchlD);
System.out.println ("\n—————

searchID = "10";
deletelID (searchlD);

searchID = "AA";
deletelID (searchlD);

System.out.println ("\n-—————

searchID = "140";

dl.insertAfter (searchID, "1440","Duke","Ellington",

searchID = "145";

dl.insertBefore (searchID, "1455","John","Coletrane",

dl.displayList();

System.out.println("\nbye");

/* peoplePet.csv

id, firstname, lastname, pet

1,Wini, Gwinnett, Crowned hawk-eagle
2,Birgit, Tabb,Silver gull
3,Alfonso,Moyle, Ring-tailed possum
4,0de, Buckwell, Leopard

5,Francene, Zanazz1i, Wambenger
6,Willie, Hakking, Butterfly
7,Carlie,Pizey, Northern fur seal

8, Cobby, Chittock, Great white pelican
9, Ingamar, Cardenoza, Puma

10,Brady, Vowles, Red meerkat
11,Nonna, Betser, Lesser mouse lemur
12,Antonina, Dovey, Insect

13,Erastus, Crackett, Cow

14, Lucien, Cardenosa, Yellow baboon
15, Leon, Storm,Blue catfish
16,Reinaldos, Welberry, Common grenadier
17,Cherice, Coleson, Shrike
18,Elyn,Antill,Echidna

19,Dicky, Guppie, Puna ibis

20, Erasmus, Pauncefort, White—-necked stork
21, Stewart,Pettifer,Starling
22,Brand, Tytcomb, Raccoon

23,Edwina, Cosens, Radiated tortoise
24,Martelle, Barkus, Cormorant
25,Blithe, Prevett,Kafue flats lechwe
26,Abbie, Ferber, Common wombat

"Phoenix");

tudra") ;

(continues on next page)

238

Chapter 33. Linked Lists

CSCI 132 Basic Data Structures

(continued from previous page)

27,Antonin, Sayes, Small-clawed otter
28, Vaughan, Barzen, Hawk—eagle
29,Elwira, Braemer, Monkey

30, Sibelle, Vennings, Javanese cormorant
31,Mavra,Bulter, Lemur

32,Darrelle, Sanford, Beisa oryx

33, Rodney, Whapples, Gull

34, Horace, Gerwood, Tropical buckeye butterfly
35,Garvin, Pestell,Bleu

36, Lauralee, Crowdace, Dama wallaby
37,Farica,Juara, Penguin

38, Bucky, Taylo, Crab

39,Carlynne, Pleasaunce, Common genet
40,Dana, Percy,White-throated kingfisher
41,Esma,McKerley, Southern ground hornbill
42,Hube, Grills,Flamingo

43,Hersch, Schneidau, Kangaroo
44,Hildy,Matfin, Gull
45,Lelia,Donaghy,American marten
46,Eric, Tydd, Bahama pintail

47,Clim, Tetsall, Spur-winged goose

48, Berke, Brotherwood, Little cormorant
49,Steve, Bride, Turtle

50, Christiane, Stoppe, Fox
51,Riley,Badgers, Swallow

52, Leonidas, Pughsley, Roseate cockatoo
53, Richard, Baudon, White-browed owl
54,Marline, Tousey, Indian mynah
55,Margarita, Breche, Phalarope

56, Gerek,Aspinwall, Great horned owl
57,Mabelle, Aronin, Grouse

58, Curtice, Provost, Indian mynah
59,Nikolaos,Cass,Desert tortoise

60, Edmund, Pogosian, Grenadier
61,Cindi,Vell,Catfish

62,Davis, Roberts, Three-banded plover
63, Clayborne, Jennrich, Roe deer
64,Malory, Iwanicki, Snowy owl

65, Toddy, Vannuchi, Arboral spiny rat
66, Terri,Dudson,Malachite kingfisher
67,Gabriel, Prine, Possum

68, Jeannine, Westwick, Gecko

69, Conney,Mattke, Stork

70,Eulalie, Wapplington, Flamingo
71,Darrick,Porcas, Rat

72,Matty, Marchment, Deer
73,Fedora, Semper, Nighthawk

74, Barnebas, Wychard, Flying fox

75, Edmund, Whitton, Squirrel
76,0liver,Dragoe, Parrot
77,Carly,Royden, Lourie
78,Cairistiona, Brothwell, Chestnut weaver
79, Barnabas, Eastby, Lion

80, Clementina,McCoish, European stork
81, Rupert, Goosnell, Boa
82,Jerrylee,Keir, Lizard

(continues on next page)

33.8. Reading Datafile Into Linked List 239

CSCI 132 Basic Data Structures

(continued from previous page)

83, Cariotta, Strettell,Little blue penguin
84,0nida, Wysome, White-rumped vulture

85, Reggis, Thursby, Cape wild cat

86, Sharleen, Yele, Gazer

87,0badias, Rosedale, Vine snake

88, Jodie, Harmond, Boat-billed heron

89, Jonie, Goodricke, Brush-tailed phascogale
90, Carissa,Clorley,Elk

91,Jacki,Belhome, Northern elephant seal
92,Virgina,Jarrette, House sparrow

93, Hasheem, Cordeiro, Oystercatcher

94, Roseann, Hussy,Fairy penguin

95, Emmeline, Saurat, Bee—eater
96,Ashlin,Ollerhead, Grey lourie
97,Frannie, Sailes, Jungle kangaroo

98, Shelden, Imason, Woodpecker
99,Nicole,Cattle, Starling

100, Bennie, Selliman, Ant

101,Monroe, Sturzaker, Wild turkey

102, Lou, Drew-Clifton, Ferruginous hawk

103, Gerladina, Broadbere, Yellow-billed stork
104, Laney, Scartifield, Common zebra
105,Rolfe,Dressel, Cape Barren goose
106,Clarita, Zylbermann, Red-legged pademelon
107,Ev,Buckston,Kite

108, Vidovic, Lawson, Buffalo
109,Daloris,Grzesiak, Southern brown bandicoot
110,Pier, Sproson, Brocket
111,Edwina,Barlace,Giant girdled lizard
112,Elvin,Birchwood, Deer

113, Jedediah, Lazonby, Wallaby

114, Ambur, Lochead, Gila monster
115,Mirabella, Ferron, Possum

116,Dougy, Gianinotti, Openbill

117, Cher,Sivill,Dog

118, Durante, Wissby, Genet

119,Rora, Shord, Dove

120, Dame, Jennison, Red-billed toucan
121,Ira,Karolowski, Eurasian red squirrel
122,Juliet, Hobson, Greylag goose
123,Natale, Tattersdill, Starling
124,Caitlin, Leggett, Ring—necked pheasant
125, Hamnet, Danelut, South African hedgehog
126, Christye, Stores, Porcupine
127,Vince, Paolo, Kangaroo
128,Cristy, Fesby, Starling

129,Britney, Standfield, Burrowing owl

130, Kaleena, Volkers, Langur
131,Averil,Kimbell, Rhea
132,Carmelita, Gehrels, Spotted-tailed quoll
133, Cory, Sreenan, Hyrax

134,Sybille, Filippone, Dove

135,Delia, Forkan, Agama lizard
136,Sigfried, Cattlemull, Eastern dwarf mongoose
137, Rowena, James, Fox

138, Shane, Naisey, Jaguarundi

(continues on next page)

240

Chapter 33. Linked Lists

CSCI 132 Basic Data Structures

(continued from previous page)

139, Janine, Ielden, Eastern fox squirrel
140,Beverlie,Biggerstaff, Fox
141,Menard, Archbould, Roe deer
142,Darline, Keating, Caribou
143,Heall,Chritchley, Beaver

144, Corenda, Bunnell,Glossy starling
145, Town, Mandal, White-winged tern
146,Pietrek, Primmer, Superb starling
147, Guillemette, Jasper, Gemsbok

148, Diane, Mewes, Civet

149,Hatty, Liddle, Grouse

150, Ange, Beardwell, Deer

*/

End Of Topic

33.8. Reading Datafile Into Linked List

241

CSCI 132 Basic Data Structures

242 Chapter 33. Linked Lists

CHAPTER
THIRTYFOUR

STACKS AND QUEUES

34.1 Key ldeas

¢ Stacks

¢ Queues

34.2 Discussion

Stacks and queues are a way of organizing data and consuming data. The data can be stored in an array or linked list.

34.2.1 Stack

Definition

A Stack is a way of organizing and consuming data where the Last In is the First Out (LIFO). Or it can be thought of as
First In is the Last Out (FILO).

Most people think of a stack as a stack of plates, where each plate represents data. Data is pushed onto the stack. Meaning.
it is added to the array or linked list. Data is consumed by popping it off of the stack. Meaning, that the last piece of data
added to the stack is removed from the array or linked list. This data is usually used by the part of the program that is
popping/removing it from the stack. Peeking is looking at the last/next piece of data, but not removing it from the stack.
An example is Stack Array

Methods usually associated with a stack are as follows:
* Push - adds data to the stack
* Pop - removes data from the stack
* Peek - retrieves the next piece/top data from the stack, but does not remove it.
¢ isFull - this is used when making a stack with an array since an array has a limited number of elements.

* isEmpty - this is used to determine if the stack is empty.

243

CSCI 132 Basic Data Structures

34.2.2 Queue

Definition

A Queue is a way of organizing and consuming data where the First In is the First Out (FIFO).

Most people think of a queue as people standing in a line, where people represent data. Data is consumed in the order in
which it was added.

Methods usually associated with a queue are as follows:

Enqueue - add data to the queue.

Dequeue - remove data from the queue

Peek - retrieves the next piece/’head” data from the queue, but does not remove it.

isFull - this is used when making a queue with an array since an array has a limited number of elements.

isEmpty - this is used to determine if the queue is empty.

34.2.3 Priority Queue

Definition

A Priority Queue is a queue where there is a mechanism to place data at the start or infront of other data.

End Of Topic

34.3 Stack - Using Array of Objects

34.3.1 Stack Methods

Methods usually associated with a stack are as follows:

Push - adds data to the stack

Pop - removes data from the stack

Peek - retrieves the next piece/top data from the stack, but does not remove it.

isFull - this is used when making a stack with an array since an array has a limited number of elements.

isEmpty - this is used to determine if the stack is empty.

Tip:

isFull is not needed if a Stack is created using a Linked List

Details discussed /ere

244

Chapter 34. Stacks and Queues

CSCI 132 Basic Data Structures

34.3.2 Lecture Code

* Project: Stack Using Array of Objects
* Programmer: James Goudy
* DS132SU_StackArray

* Stack

* push

* pop

* peek

* 1sEmpty
* isFull

*/
class Town ¢

public String city;
public int population;

// constructor

public Town (String city, int population) {
this.city = city;
this.population = population;

public void displayCity () {
System.out.print ("{" + city + ", " + population + "} ");

class Stack {

private int maxSize;
private Town|[] stackArray;
private int top = -1;

//constructor

public Stack (int maxSize) {
this.maxSize = maxSize;
stackArray = new Town[maxSize];
top = —-1;

public boolean push (String city, int population) {

// add data to the stack

if (isFull()) {
return false;

} else {
Town theTown = new Town (city, population);
stackArray|[++top] = theTown;

return true;

(continues on next page)

34.3. Stack - Using Array of Objects 245

CSCI 132 Basic Data Structures

(continued from previous page)

public Town pop() A
// remove data from the stack
return stackArray[top——1;

public Town peek () {
// look/peek at the top of the stack
return stackArray[top];

public boolean isEmpty () {
//check if the array is empty
return (top == -1);

public boolean isFull() {
// check if the array is full
return (top == maxSize - 1);

public class DS132SU_StackArray {

public static void main (String[] args) {

// create a stack
Stack myStack = new Stack (10);
Town tempTown = null;

// add data to the stack

myStack.push ("Kali", 300000);
myStack.push ("Bozeman", 100000);
myStack.push ("Whitefish", 40000);
myStack.push ("Columbia Falls", 30000);

// peek at the top data
System.out .print ("Peek - ");
myStack.peek () .displayCity();
System.out.println("");

// pop one data object from the stack and store it in an object
tempTown = myStack.pop();
tempTown.displayCity () ;

// empty the 1list

while (!myStack.isEmpty()) {
myStack.pop () .displayCity () ;

System.out.println("");

(continues on next page)

246

Chapter 34. Stacks and Queues

CSCI 132 Basic Data Structures

(continued from previous page)

//ternary operator
boolean flag;
flag = myStack.push ("Plains", 15000) ? true : false;

if (flag) |

System.out.println("Item added");
} else {

System.out.println("Item NOT added");
}

System.out.print ("\nbye");

End of Topic

34.4 Queue - Using Array Of Objects

34.4.1 Queue Methods

Methods usually associated with a queue are as follows:
* Enqueue - add data to the queue.
* Dequeue - remove data from the queue
¢ Peek - retrieves the next piece/”head” data from the queue, but does not remove it.
¢ isFull - this is used when making a queue with an array since an array has a limited number of elements.

¢ isEmpty - this is used to determine if the queue is empty.

Tip: isFull is not needed if a Stack is created using a Linked List

Check This Out!

// make a new queue object

Queue theQue = new Queue(5);

/* NOTICE THE CODE BELOW - make an object from the sub class */

Queue.Town theTown = theQue.new Town(“”, 0);

Details discussed /ere

34.4. Queue - Using Array Of Objects 247

CSCI 132 Basic Data Structures

34.4.2 Lecture Code

J*
*Programmer: James Goudy
*Project: Queue of Objects
*

*/

package com.mycompany.dsl32su_queue;

/**
*
* @author jgoudy
*/

class Queue {

class Town {
// subclass
public String city;
public int population;
public Town (String city, int population)
this.city = city;

this.population = population;

public void displayTown () {
System.out.print ("{" + city + " - "

}// end of town

int maxSize;
Town[] queArray;
int numItems;
int head;

int tail;

private
private
private
private
private

// Queue Constructor
public Queue (int maxSize) {
this.maxSize = maxSize;

queArray = new Town[maxSize];
head = 0;

tail = -1;

numItems = 0;

public boolean isFull() {
return (numItems == maxSize);

public boolean isEmpty () {
return (numItems == 0);

public boolean enqueue (String city,

// insert at tail

{

+ population +

int population) {

ll} ll);

(continues on next page)

248

Chapter 34. Stacks and Queues

CSCI 132 Basic Data Structures

(continued from previous page)

// "enqueue"
if (isFull()) {
return false;

// create town
Town newTown = new Town (city, population);

// wrap to front if neccessary
if (tail == maxSize - 1) {
tail = —-1;

// add object to array
queArray[++tail] = newTown;

// increment the count of objects in the array
numlItems++;

return true;

public Town dequeue () {
// remove from the front - the head
// "dequeue"

if (isEmpty()) {
System.out.print ("Queue is empty");
return null;

// retreive the next in queue and move the head to
// the next data item.
Town temp = queArray|[head++];

if (head == maxSize) |
head = 0;

// decrease the count of objects in the array
numltems——;

return temp;

public Town peek () {
// retreive the head information but do not remove
return queArray [head];

public void displayQueue () {
int cntr = 0;
int pos = head;
while (cntr < numItems) {
queArray [pos] .displayTown () ;
cntr++;

(continues on next page)

34.4. Queue - Using Array Of Objects 249

CSCI 132 Basic Data Structures

(continued from previous page)

pos++;
// loop to the start of the array if necessary
if (pos == maxSize) {
pos = 0;
}

}
System.out.println("\n");
} // end of queue
public class DS132SU_Queue {
public static void main (String[] args) {

// make a new queue object
Queue theQue = new Queue (5);

// make an object from the sub class
Queue.Town theTown = theQue.new Town("", 0);

String acity;

theQue.enqueue ("Bozeman", 100000);

theQue.enqueue ("Culver", 100001);

theQue.enqueue ("Dover", 100002);

theQue.enqueue ("Edger", 100003);

System.out.println ("\n-—————— Queue———————-— \n");
theQue.displayQueue () ;

System.out.println("\nDequeue the first two items in the queue");
// return next item from the queue

theTown = theQue.dequeue();

System.out.println("\n" + theTown.city + " - " + theTown.population);

theTown = theQue.dequeue();
System.out.println("\n" + theTown.city + " - " + theTown.population);

System.out.println("\n-————————————~ \n");
System.out.println ("\nDequeue and retreive only the city");
// another option to dequeue and retrieve city only

acity = theQue.dequeue () .city;

System.out.println(acity);

System.out.println ("\n-—————— Queue———————— \n");

theQue.displayQueue () ;

theQue.enqueue ("Franklin", 104);

(continues on next page)

250 Chapter 34. Stacks and Queues

CSCI 132 Basic Data Structures

(continued from previous page)

theQue.enqueue ("Georgetown", 105);
theQue.enqueue ("Highland", 106);

System.out.println("\n-——————- Queue ——————- \n");
theQue.displayQueue () ;

System.out.println ("\n-————- Peek just city - ——————- \n");

acity = theQue.peek () .city;
System.out .println (acity);

System.out.println ("\n————— Peek city population ————————- \n");

theTown = theQue.peek();
System.out.println("\n" + theTown.city + " - " + theTown.population);

System.out.println ("\n-—————— Queue ———————— \n");

// notice that peek did not remove any towns
theQue.displayQueue () ;

{Bozeman - 100000} {Culver - 100001} {Dover - 100002} {Edger - 100003}

Dequeue the first two items in the queue
Bozeman — 100000

Culver — 100001

Dover

(continues on next page)

34.4. Queue - Using Array Of Objects 251

CSCI 132 Basic Data Structures

(continued from previous page)

{Edger - 100003} {Franklin - 104} {Georgetown

*/

- 105} {Highland - 106}

End Of Topic

34.5 Priority Queue

34.5.1 Key Ideas

* Priority Queue

Definition

A Priority Queue is a queue where there is a mechanism to place data at the start or in front of other data.

34.5.2 Lecture Code

// priorityQ.java
// demonstrates priority queue

/**
*
* @author jgoudy
*/

class PriorityQ {

private int maxSize;
private int|[] queArr;
private int nItems;

// constructor
public PriorityQ (int maxSize)

this.maxSize = maxSize;
queArr = new int[maxSize];
nItems = 0;

{

(continues on next page)

252

Chapter 34. Stacks and Queues

CSCI 132 Basic Data Structures

(continued from previous page)

public boolean isFull() {
return (nItems == maxSize);

public boolean isEmpty () {
return (nItems == 0);

// enqueue - add to queue
// lower numbers take a higher place in the queue

public void enqueue (int key) {

int c;
if (isEmpty()) |
queArr [nItems++] = key;
} else {
for (¢ = nItems - 1; c >= 0; c—) |
if (key > queArr|c]) |
queArr[c + 1] = queArr[c];
} else {
break;

}
}// end of for

queArr[c + 1] = key;

nltems++;

// retreive the next item from the queue
// and remove it from the queue
public int dequeue () {

return queArr|[--nltems];

// reteive the data from the next item in the queue
// but does NOT remove it
public int peek () {

return queArr[nlItems - 1];

// print the queue
public void printPriorityQ() {
System.out.println();
for (int ¢ = 0; ¢ < nItems; c++) {
System.out .print (queArr[c] + " ");
}
System.out.println();

} // end of class

public class Ds_priorityQueue {

(continues on next page)

34.5. Priority Queue

253

CSCI 132 Basic Data Structures

(continued from previous page)

public static void main (String[] args) |

// assumption lower the number - higher the priority
PriorityQ thePQ = new PriorityQ(10);

// add data items to the queue
thePQ.enqueue (30) ;
thePQ.enqueue (50) ;
thePQ.enqueue (10) ;
thePQ.enqueue (40) ;
thePQ.enqueue (20) ;
thePQ.enqueue (60) ;
thePQ.enqueue (5) ;

// print the queue
thePQ.printPriorityQ () ;

System.out.println("\n-———————-——- \n");

// peek at the next data item
System.out.println("Peek " + thePQ.peek());

System.out.println("\n-—————————— \n");
// remove all the items from the queue

while (!thePQ.isEmpty()) A
int x = thePQ.dequeue();

System.out.print(x + " ");
}
System.out.println("\n-——————————— ur
}
}
/* Output

60 50 40 30 20 10 5

End Of Topic

254

Chapter 34. Stacks and Queues

CHAPTER
THIRTYFIVE

SORTING ALGORITHMS

e Bubble Sort

35.1 Visualizations

Visual Aglo
Toptal
Comparison Sorting Algorithms

Sort Visualizer

End Of Topic

35.2 Bubble Sort

35.2.1 Key Ideas

¢ Bubble Sort

Definition

Bubble Sort is a simple sorting algorithm that repeatedly iterates through the list or array. It compares adjacent elements
and swaps them if they are in the wrong order. The algorithm repeatedly passes through the list until the list is sorted. It
is a comparison sort and is named for the way smaller or larger elements “bubble” to the top of the list.

35.3 Performance

Bubble sort has a worst-case and average complexity of On”2”.

255

https://visualgo.net/en/sorting
https://www.toptal.com/developers/sorting-algorithms
https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
https://www.sortvisualizer.com/

CSCI 132 Basic Data Structures

35.3.1 Visualizations

Visual Aglo
Toptal
Comparison Sorting Algorithms

Sort Visualizer

35.3.2 Videos

35.3.3 Lecture Code

/*
* Programmer: James Goudy
* Project: Bubble Sort
*/

package com.mycompany.bubblesort_lecturecode;
import java.util.Random;
class BubbleSort {

// arrInt is an array of integers

// numDataElements is the actual count

// of elements of data in the array

// algorithm assumes the data is contiguous
int arrInt([];

int numDataElments;

public BubbleSort (int[] arrInt, int numDataElments)
this.arrInt = arrInt;
this.numbDataElments = numDataElments;

public void Sort () {
/7

int n = numDataElments;

for (int ¢ = 0; c < n; c++) {
for (int j = 1; J < (n); j++) |

// check if the left element 1is
// greater to the one on the right
// "Bubble" the lowest to the left

if (arrInt[j - 1] > arrInt[j]) A
// swap left element arr[j-1]

{

// with the one on the right and arr(j]

// store left one in temp

int temp = arrInt([j - 1];
//copy the right into the left
arrInt[j - 1] = arrInt[]j];

//copy the left into the right

(continues on next page)

256

Chapter 35. Sorting Algorithms

https://visualgo.net/en/sorting
https://www.toptal.com/developers/sorting-algorithms
https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
https://www.sortvisualizer.com/

CSCI 132 Basic Data Structures

(continued from previous page)

arrInt[j] = temp;

public class BubbleSort_LectureCode {

static int arrSize = 8;
//static int theArray/[] new int[arrSize];
static int theArrayl[] ={3,60,35,2,45,320,5,1};

static void fillTheArray ()
{

Random RNG = new Random() ;
for(int ¢ = 0; ¢ < arrSize; c++)
{
theArray[c] = RNG.nextInt (0, (arrSize*10));
}

static void printArray(int anArray([], int numOfDataElements)

{

System.out.println("");

for (int i = 0; i < numOfDataElements; i++) {
System.out.print (anArray[i] + " ");

}

System.out.println("\n-———————————~ \n");

public static void main (String[] args) {

// option to randomly fill the array
//fillTheArray();

printArray (theArray, arrSize);

BubbleSort bs = new BubbleSort (theArray, arrSize);
bs.Sort ();

printArray (theArray, arrSize);

J*
3 60 35 2 45 320 5 1

35.3. Performance 257

CSCI 132 Basic Data Structures

End Of Topic

35.4 End Of Section

Algorithms and Data Structures

End Of Section

258

Chapter 35. Sorting Algorithms

	I Java Language
	Java Language
	NetBeans Installation
	Three Main Steps
	Install Open JDK
	Set the Environmental Variables in Windows
	Install Apache NetBeans

	JAVA Introduction
	Key Ideas
	Readings
	History
	Program Features
	IDE – Integrated Development Environment
	NetBeans
	Eclipse
	Others

	Java Basics
	Key Topics

	Readings
	Comments
	Examples

	Variables
	Naming Variables
	Examples
	Data Types

	Operators
	Order Of Operations
	Incrementors and Decrementors
	Escape Characters
	Comparative Operators
	Logical Operators
	Truth Table

	Concatenation
	Example

	Variable Lecture Code
	Key Ideas
	Readings
	Printing
	Getting Input From The Console

	First Program
	Key Ideas
	Readings

	Second Program
	Observations
	Lecture Code

	Functions
	Key Ideas
	Readings
	Definition
	Concepts

	Decision Trees
	Key Ideas
	Readings
	Observations
	Lecture Code
	In Class

	Switch Statement
	Key Ideas
	Readings
	Lecture Code
	Example
	More Menu Examples
	New format of switch statement after version 14+

	String Functions
	Key Ideas

	Number Formats
	Key Ideas

	Iteration / Loops
	Key Ideas
	Readings
	Lecture
	Java Loops

	Types Of Loops
	Example Basic Loops
	Loop To Control Menu
	Loops For Printing A Grid

	Exception Handling
	Key Ideas
	Readings

	File, Folder - Creation and Deletion
	Key Ideas
	Lecture Code

	IO Read CSV File
	Key Ideas
	Lecture Code

	Arrays
	Key Ideas
	Readings
	Concepts
	Visualization
	2 Dimensional Array

	Lecture Code

	ArrayLists
	Key Ideas
	Readings
	Concepts
	Lecture Code
	Observations:

	Overloading
	Lecture Code

	Classes and Objects
	Key Ideas
	Readings
	Concepts
	Class Definition
	Attributes
	Constructors

	Setters and Getters
	Methods
	Dog Completed Code
	In-class Exercise Suggestion

	Classes - Inheritance
	Key Ideas
	Readings

	Concepts
	Lecture Code

	Abstract Classes
	Key Ideas
	Readings
	Lecture Code

	Lambda Functions
	Key Ideas
	Readings
	Lecture Code

	Recursion
	Key Topics
	Readings

	Videos
	Lecture Code
	Lecture Code II

	Regex - Using Java Matches
	From Stack Overflow
	Lecture Code
	Regular Expression References

	Reference Reading
	Additional supplemental topics.
	Building Large Java Applications
	Java Applications
	Organizing Your Development Environment
	Basics of Class Loading
	The Bootstrap Classloader
	Classpaths
	More on Classloaders, Classpaths, and Related Topics

	Building Your Application

	Ant Vs Maven Vs Gradle
	Introduction
	Apache Ant
	Apache Maven
	Gradle

	Polymorphism in Java (With Examples)
	What is Polymorphism?
	What is Polymorphism in Java?
	Real-Life Examples of Polymorphism
	Polymorphism in Java Example

	Types of Polymorphism
	What is Method Overloading in Java?
	Example of Method Overloading in Java

	What is Method Overriding in Java?
	Example of Method Overriding in Java
	What is Compile-Time Polymorphism in Java?
	Example of Compile-Time Polymorphism in Java
	What is Runtime Polymorphism in Java?
	Examples of Runtime Polymorphism in Java

	Example of run-time polymorphism in java
	Runtime polymorphism with multilevel inheritance

	Polymorphic Subtypes
	What is Polymorphism in Programming?
	What is Polymorphism Variables?
	Why use Polymorphism in Java?
	Advantages of Polymorphism in Java
	Characteristics of Polymorphism
	1. Coercion
	2. Internal Operator Overloading
	3. Polymorphic Variables or Parameters

	Problems with Polymorphism
	Conclusion

	Unable To Run .JAR Files in Windows 10 / 11 ? Here’s the Solution
	Method 1 – Download and run jarfix
	Method 2: By Creating a .bat File
	Method 3: By Downloading Java
	Method 4: Through Properties
	Method 5: Using Command Prompt
	Method 6: Set file association

	End Of Section

	II Data Structures
	Data Structures and Algorithms
	Textbooks and Online Sources

	Array Techniques
	Array Warp Around
	Key Ideas
	Lecture Code

	Array Add and Delete Data
	Key Ideas
	Lecture Code

	Big O Notation
	Key Ideas
	Reading
	Videos
	Visualizing Big O notation
	O(1)
	O(1) plot

	O(logN)
	O(logN) plot

	O(N)
	O(N) plot

	O(N^2^)
	O(N^2^) plot

	O(N^3^)
	O(N^3^) plot

	Conclusions

	Big O Notation - Explained
	O(1) - Constant Time
	O(n) - Linear Time
	O(n²) - Quadratic Time

	Linked Lists
	Benefits of a linked list
	Disadvantages of a linked list
	Types of linked lists
	Singly Linked List
	Ternary Operator
	Lecture Code
	Singly Linked List Code
	Singly Linked List - Nested Link Class

	Doubly Linked List
	Key Ideas
	Lecture Code

	Doubly Linked List - Links as Sub Class
	Key Ideas
	Lecture Code

	Circular Linked List - Links as Sub Class
	Key Ideas
	Lecture Code

	Reading Datafile Into Linked List
	Lecture Code

	Stacks and Queues
	Key Ideas
	Discussion
	Stack
	Queue
	Priority Queue

	Stack - Using Array of Objects
	Stack Methods
	Lecture Code

	Queue - Using Array Of Objects
	Queue Methods
	Lecture Code

	Priority Queue
	Key Ideas
	Lecture Code

	Sorting Algorithms
	Visualizations
	Bubble Sort
	Key Ideas

	Performance
	Visualizations
	Videos
	Lecture Code

	End Of Section

